From 21fc781fce12d5b97d981b199ca7a096725e1690 Mon Sep 17 00:00:00 2001 From: ivy-lv11 <59141989+ivy-lv11@users.noreply.github.com> Date: Fri, 21 Jun 2024 12:54:31 +0800 Subject: [PATCH] Add GLM-4V example (#11343) * add example * modify * modify * add line * add * add link and replace with phi-3-vision template * fix generate options * fix * fix --------- Co-authored-by: jinbridge <2635480475@qq.com> --- README.md | 1 + docs/readthedocs/source/index.rst | 7 + .../Model/glm-4v/README.md | 84 +++++++++++ .../Model/glm-4v/generate.py | 78 +++++++++++ .../Model/glm-4v/README.md | 132 ++++++++++++++++++ .../Model/glm-4v/generate.py | 81 +++++++++++ 6 files changed, 383 insertions(+) create mode 100644 python/llm/example/CPU/HF-Transformers-AutoModels/Model/glm-4v/README.md create mode 100644 python/llm/example/CPU/HF-Transformers-AutoModels/Model/glm-4v/generate.py create mode 100644 python/llm/example/GPU/HF-Transformers-AutoModels/Model/glm-4v/README.md create mode 100644 python/llm/example/GPU/HF-Transformers-AutoModels/Model/glm-4v/generate.py diff --git a/README.md b/README.md index e4eba63d..1b8fe3aa 100644 --- a/README.md +++ b/README.md @@ -232,6 +232,7 @@ Over 50 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaM | ChatGLM2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/chatglm2) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/chatglm2) | | ChatGLM3 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/chatglm3) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/chatglm3) | | GLM-4 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/glm4) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/glm4) | +| GLM-4V | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/glm-4v) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/glm-4v) | | Mistral | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/mistral) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/mistral) | | Mixtral | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/mixtral) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/mixtral) | | Falcon | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/falcon) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/falcon) | diff --git a/docs/readthedocs/source/index.rst b/docs/readthedocs/source/index.rst index bc40a593..b7125664 100644 --- a/docs/readthedocs/source/index.rst +++ b/docs/readthedocs/source/index.rst @@ -313,6 +313,13 @@ Verified Models link + + GLM-4V + + link + + link + Mistral diff --git a/python/llm/example/CPU/HF-Transformers-AutoModels/Model/glm-4v/README.md b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/glm-4v/README.md new file mode 100644 index 00000000..cd5a5cb9 --- /dev/null +++ b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/glm-4v/README.md @@ -0,0 +1,84 @@ +# GLM-4V + +In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on GLM-4V models. For illustration purposes, we utilize the [THUDM/glm-4v-9b](https://huggingface.co/THUDM/glm-4v-9b) as a reference GLM-4V model. + +## 0. Requirements +To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. + +## Example: Predict Tokens using `generate()` API +In the example [generate.py](./generate.py), we show a basic use case for a GLM-4V model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations. +### 1. Install +We suggest using conda to manage environment: + +On Linux: + +```bash +conda create -n llm python=3.11 # recommend to use Python 3.11 +conda activate llm + +# install ipex-llm with 'all' option +pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu + +pip install torchvision tiktoken +``` + +On Windows: + +```cmd +conda create -n llm python=3.11 +conda activate llm + +pip install --pre --upgrade ipex-llm[all] + +pip install torchvision tiktoken +``` + +### 2. Run +``` +python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --image-url-or-path IMAGE_URL_OR_PATH --prompt PROMPT --n-predict N_PREDICT +``` + +Arguments Info: + +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the GLM-4V model (e.g. `THUDM/glm-4v-9b`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/glm-4v-9b'`. +- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`. +- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`. +- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. + +> **Note**: When loading the model in 4-bit, IPEX-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference. +> +> Please select the appropriate size of the GLM-4V model based on the capabilities of your machine. + +#### 2.1 Client +On client Windows machines, it is recommended to run directly with full utilization of all cores: +```cmd +python ./generate.py +``` + +#### 2.2 Server +For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket. + +E.g. on Linux, +```bash +# set IPEX-LLM env variables +source ipex-llm-init + +# e.g. for a server with 48 cores per socket +export OMP_NUM_THREADS=48 +numactl -C 0-47 -m 0 python ./generate.py +``` + +#### 2.3 Sample Output +#### [THUDM/glm-4v-9b](https://huggingface.co/THUDM/glm-4v-9b) + +```log +Inference time: xxxx s +-------------------- Prompt -------------------- +What is in the image? +-------------------- Output -------------------- +The image shows a young child holding up a small white teddy bear dressed in a pink +``` + +The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)): + + diff --git a/python/llm/example/CPU/HF-Transformers-AutoModels/Model/glm-4v/generate.py b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/glm-4v/generate.py new file mode 100644 index 00000000..384799f8 --- /dev/null +++ b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/glm-4v/generate.py @@ -0,0 +1,78 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import os +import time +import torch +import argparse +import requests + +from PIL import Image +from ipex_llm.transformers import AutoModelForCausalLM +from transformers import AutoTokenizer + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for THUDM/glm-4v-9b model') + parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/glm-4v-9b", + help='The huggingface repo id for the THUDM/glm-4v-9b model to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--image-url-or-path', type=str, + default="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg", + help='The URL or path to the image to infer') + parser.add_argument('--prompt', type=str, default="What is in the image?", + help='Prompt to infer') + parser.add_argument('--n-predict', type=int, default=32, + help='Max tokens to predict') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + image_path = args.image_url_or_path + + # Load model in 4 bit, + # which convert the relevant layers in the model into INT4 format + model = AutoModelForCausalLM.from_pretrained(model_path, + load_in_4bit=True, + optimize_model=True, + trust_remote_code=True, + use_cache=True) + + tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) + + query = args.prompt + if os.path.exists(image_path): + image = Image.open(image_path) + else: + image = Image.open(requests.get(image_path, stream=True).raw) + + # here the prompt tuning refers to https://huggingface.co/THUDM/glm-4v-9b/blob/main/README.md + inputs = tokenizer.apply_chat_template([{"role": "user", "image": image, "content": query}], + add_generation_prompt=True, + tokenize=True, + return_tensors="pt", + return_dict=True) # chat mode + inputs = inputs.to('cpu') + + # Generate predicted tokens + with torch.inference_mode(): + gen_kwargs = {"max_length": args.n_predict, "do_sample": True, "top_k": 1} + st = time.time() + outputs = model.generate(**inputs, **gen_kwargs) + outputs = outputs[:, inputs['input_ids'].shape[1]:] + end = time.time() + print(f'Inference time: {end-st} s') + output_str = tokenizer.decode(outputs[0]) + print('-'*20, 'Output', '-'*20) + print(output_str) diff --git a/python/llm/example/GPU/HF-Transformers-AutoModels/Model/glm-4v/README.md b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/glm-4v/README.md new file mode 100644 index 00000000..d976b51e --- /dev/null +++ b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/glm-4v/README.md @@ -0,0 +1,132 @@ +# GLM-4V +In this directory, you will find examples on how you could apply IPEX-LLM FP8 optimizations on GLM-4V models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [THUDM/glm-4v-9b](https://huggingface.co/THUDM/glm-4v-9b) as a reference GLM-4V model. + +## 0. Requirements +To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. + +## Example: Predict Tokens using `generate()` API +In the example [generate.py](./generate.py), we show a basic use case for a GLM-4V model to predict the next N tokens using `generate()` API, with IPEX-LLM FP8 optimizations on Intel GPUs. +### 1. Install +#### 1.1 Installation on Linux +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.11 +conda activate llm +# below command will install intel_extension_for_pytorch==2.1.10+xpu as default +pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ + +pip install tiktoken +``` + +#### 1.2 Installation on Windows +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.11 libuv +conda activate llm + +# below command will install intel_extension_for_pytorch==2.1.10+xpu as default +pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ + +pip install tiktoken +``` + +### 2. Configures OneAPI environment variables for Linux + +> [!NOTE] +> Skip this step if you are running on Windows. + +This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI. + +```bash +source /opt/intel/oneapi/setvars.sh +``` + +### 3. Runtime Configurations +For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device. +#### 3.1 Configurations for Linux +
+ +For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series + +```bash +export USE_XETLA=OFF +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +export SYCL_CACHE_PERSISTENT=1 +``` + +
+ +
+ +For Intel Data Center GPU Max Series + +```bash +export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +export SYCL_CACHE_PERSISTENT=1 +export ENABLE_SDP_FUSION=1 +``` +> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`. +
+ +
+ +For Intel iGPU + +```bash +export SYCL_CACHE_PERSISTENT=1 +export BIGDL_LLM_XMX_DISABLED=1 +``` + +
+ +#### 3.2 Configurations for Windows +
+ +For Intel iGPU + +```cmd +set SYCL_CACHE_PERSISTENT=1 +set BIGDL_LLM_XMX_DISABLED=1 +``` + +
+ +
+ +For Intel Arc™ A-Series Graphics + +```cmd +set SYCL_CACHE_PERSISTENT=1 +``` + +
+ +> [!NOTE] +> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile. +### 4. Running examples + +``` +python ./generate.py --prompt 'What is in the image?' +``` + +Arguments info: +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the GLM-4V model (e.g. `THUDM/glm-4v-9b`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/glm-4v-9b'`. +- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`. +- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`. +- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. + +#### Sample Output +#### [THUDM/glm-4v-9b](https://huggingface.co/THUDM/glm-4v-9b) + +```log +Inference time: xxxx s +-------------------- Prompt -------------------- +What is in the image? +-------------------- Output -------------------- +The image shows a young child holding up a small white teddy bear dressed in a pink +``` + +The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)): + + diff --git a/python/llm/example/GPU/HF-Transformers-AutoModels/Model/glm-4v/generate.py b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/glm-4v/generate.py new file mode 100644 index 00000000..6a1dd035 --- /dev/null +++ b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/glm-4v/generate.py @@ -0,0 +1,81 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import os +import time +import torch +import argparse +import requests + +from PIL import Image +from ipex_llm.transformers import AutoModelForCausalLM +from transformers import AutoTokenizer + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for THUDM/glm-4v-9b model') + parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/glm-4v-9b", + help='The huggingface repo id for the THUDM/glm-4v-9b model to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--image-url-or-path', type=str, + default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg', + help='The URL or path to the image to infer') + parser.add_argument('--prompt', type=str, default="What is in the image?", + help='Prompt to infer') + parser.add_argument('--n-predict', type=int, default=32, + help='Max tokens to predict') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + image_path = args.image_url_or_path + + # Load model in 4 bit, + # which convert the relevant layers in the model into INT4 format + # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function. + # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU. + model = AutoModelForCausalLM.from_pretrained(model_path, + load_in_4bit=True, + optimize_model=True, + trust_remote_code=True, + use_cache=True).half().to('xpu') + + tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) + + query = args.prompt + if os.path.exists(image_path): + image = Image.open(image_path) + else: + image = Image.open(requests.get(image_path, stream=True).raw) + + # here the prompt tuning refers to https://huggingface.co/THUDM/glm-4v-9b/blob/main/README.md + inputs = tokenizer.apply_chat_template([{"role": "user", "image": image, "content": query}], + add_generation_prompt=True, + tokenize=True, + return_tensors="pt", + return_dict=True) # chat mode + inputs = inputs.to('xpu') + + + # Generate predicted tokens + with torch.inference_mode(): + gen_kwargs = {"max_length": args.n_predict, "do_sample": True, "top_k": 1} + st = time.time() + outputs = model.generate(**inputs, **gen_kwargs) + outputs = outputs[:, inputs['input_ids'].shape[1]:] + end = time.time() + print(f'Inference time: {end-st} s') + output_str = tokenizer.decode(outputs[0]) + print('-'*20, 'Output', '-'*20) + print(output_str)