Refactor npu mp to make it easier to integrate new models (#11873)
* Refactor npu mp to make it easier to integrate new models * fix style * move layer functions to base
This commit is contained in:
parent
537c0d2767
commit
209d42ab79
2 changed files with 470 additions and 328 deletions
|
|
@ -48,70 +48,11 @@ from colorama import Fore, Back, Style
|
|||
import torch.multiprocessing as mp
|
||||
from transformers.cache_utils import Cache
|
||||
from transformers.modeling_outputs import BaseModelOutputWithPast
|
||||
from ipex_llm.transformers.npu_models.mp_models_base import run_model
|
||||
from ipex_llm.transformers.npu_models.mp_models_base import LLMBaseNNFactory
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def run_model(
|
||||
x: Union[torch.Tensor, List[torch.Tensor]],
|
||||
weights: List[torch.Tensor],
|
||||
backend_cls: Any,
|
||||
op_id: str,
|
||||
replica: int = 1,
|
||||
) -> torch.Tensor:
|
||||
global _model_cache
|
||||
import time
|
||||
|
||||
t0 = time.perf_counter()
|
||||
|
||||
# Use or not op_id depending on the class used
|
||||
op_kwargs = {"op_id": op_id} if op_id else {}
|
||||
|
||||
if not isinstance(x, (list, tuple)):
|
||||
x = [x]
|
||||
|
||||
# Reshape input
|
||||
input_dtype = x[0].dtype
|
||||
x_np = [set_contiguous(elem).to(torch.float16).numpy() for elem in x]
|
||||
op_args = []
|
||||
op_args_flatten = []
|
||||
for w in weights:
|
||||
if isinstance(w, tuple): # from QuantizedLinear
|
||||
op_args.append((set_contiguous(w[0]).numpy(), set_contiguous(w[1]).numpy()))
|
||||
op_args_flatten.append(op_args[-1][0])
|
||||
op_args_flatten.append(op_args[-1][1])
|
||||
else:
|
||||
op_args.append(set_contiguous(w).to(torch.float16).numpy())
|
||||
op_args_flatten.append(op_args[-1])
|
||||
|
||||
shape_dtype_signature = "_".join(
|
||||
["_".join(str(dim) for dim in t.shape) + f"_{t.dtype}" for t in x_np + op_args_flatten]
|
||||
)
|
||||
key = f"{backend_cls.func.__name__}_{shape_dtype_signature}"
|
||||
models = _model_cache.get(key, None)
|
||||
|
||||
input_shapes = [elem.shape for elem in x_np]
|
||||
if models is None:
|
||||
_model_cache[key] = deque([backend_cls(*input_shapes) for i in range(replica)])
|
||||
elif len(models) < 1:
|
||||
_model_cache[key].append(backend_cls(*input_shapes))
|
||||
else:
|
||||
_model_cache[key].rotate(1)
|
||||
|
||||
# Get the model
|
||||
model = _model_cache[key][0]
|
||||
|
||||
with record_function(f"npu_factory_mul_{key}"):
|
||||
ret = model.run(x_np, *op_args, **op_kwargs)
|
||||
|
||||
if isinstance(ret, list):
|
||||
results = [adapt_output_tensor(r, r.shape, input_dtype) for r in ret]
|
||||
else:
|
||||
results = adapt_output_tensor(ret, ret.shape, input_dtype)
|
||||
|
||||
return results
|
||||
|
||||
|
||||
class LowBitLlamaMultiDecoderlayer(NNFactory):
|
||||
class LowBitLlamaMultiDecoderlayer(LLMBaseNNFactory):
|
||||
def __init__(
|
||||
self,
|
||||
# batch_size: int,
|
||||
|
|
@ -135,7 +76,11 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
|
|||
rms_norm_eps,
|
||||
intermediate_size,
|
||||
):
|
||||
super().__init__(profile, device)
|
||||
super().__init__(max_seq_len=max_seq_len,
|
||||
transpose_value=transpose_value,
|
||||
dtype=dtype,
|
||||
profile=profile,
|
||||
device=device)
|
||||
self.max_seq_len = max_seq_len
|
||||
self.intermediate_size = intermediate_size
|
||||
self.dtype = dtype
|
||||
|
|
@ -145,6 +90,7 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
|
|||
self.mode = mode
|
||||
self.rms_norm_eps = rms_norm_eps
|
||||
self.transpose_value = transpose_value
|
||||
self.num_layers = num_layers
|
||||
|
||||
cos = self.constant(self.cached_cos)
|
||||
self.cos = self.unsqueeze(cos, axis=0)
|
||||
|
|
@ -164,28 +110,28 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
|
|||
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
||||
|
||||
# define input, the order self.parameter matters
|
||||
input = self.parameter((self.batch_size, self.seq_len, self.hidden_size))
|
||||
input = self.create_input_op((self.batch_size, self.seq_len, self.hidden_size))
|
||||
|
||||
# Self Attention
|
||||
if mode == "decode":
|
||||
attention_mask = self.parameter((self.batch_size, 1, 1, self.max_seq_len + 1))
|
||||
attention_mask = self.create_input_op((self.batch_size, 1, 1, self.max_seq_len + 1))
|
||||
else:
|
||||
attention_mask = self.parameter((self.batch_size, 1, self.seq_len, self.seq_len))
|
||||
attention_mask = self.create_input_op((self.batch_size, 1, self.seq_len, self.seq_len))
|
||||
|
||||
position_ids = self.parameter((self.batch_size, self.seq_len))
|
||||
position_ids = self.create_input_op((self.batch_size, self.seq_len))
|
||||
past_keys = []
|
||||
past_values = []
|
||||
if mode == "decode":
|
||||
for i in range(num_layers):
|
||||
past_key = self.parameter(
|
||||
past_key = self.create_cache_op(
|
||||
(self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim)
|
||||
)
|
||||
if transpose_value:
|
||||
past_value = self.parameter(
|
||||
past_value = self.create_cache_op(
|
||||
(self.batch_size, self.num_key_value_heads, self.head_dim, self.max_seq_len)
|
||||
)
|
||||
else:
|
||||
past_value = self.parameter(
|
||||
past_value = self.create_cache_op(
|
||||
(self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim)
|
||||
)
|
||||
past_keys.append(past_key)
|
||||
|
|
@ -199,7 +145,7 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
|
|||
post_attn_layernorm_weights = []
|
||||
for i in range(num_layers):
|
||||
input_layernorm_weights.append(
|
||||
self.parameter(
|
||||
self.create_input_op(
|
||||
(
|
||||
1,
|
||||
self.hidden_size,
|
||||
|
|
@ -207,7 +153,7 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
|
|||
)
|
||||
)
|
||||
post_attn_layernorm_weights.append(
|
||||
self.parameter(
|
||||
self.create_input_op(
|
||||
(
|
||||
1,
|
||||
self.hidden_size,
|
||||
|
|
@ -243,37 +189,6 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
|
|||
print("start compiling")
|
||||
self.compile()
|
||||
|
||||
def repeat_kv(self, hidden_states, n_rep, transpose=False):
|
||||
if n_rep == 1:
|
||||
return hidden_states
|
||||
if not transpose:
|
||||
hidden_states = self.reshape(
|
||||
hidden_states,
|
||||
[self.batch_size, self.num_key_value_heads, 1, self.kv_seq_len, self.head_dim],
|
||||
)
|
||||
hidden_states = self.broadcast(
|
||||
hidden_states,
|
||||
[self.batch_size, self.num_key_value_heads, n_rep, self.kv_seq_len, self.head_dim],
|
||||
)
|
||||
hidden_states = self.reshape(
|
||||
hidden_states,
|
||||
[self.batch_size, n_rep * self.num_key_value_heads, self.kv_seq_len, self.head_dim],
|
||||
)
|
||||
else:
|
||||
hidden_states = self.reshape(
|
||||
hidden_states,
|
||||
[self.batch_size, self.num_key_value_heads, 1, self.head_dim, self.kv_seq_len],
|
||||
)
|
||||
hidden_states = self.broadcast(
|
||||
hidden_states,
|
||||
[self.batch_size, self.num_key_value_heads, n_rep, self.head_dim, self.kv_seq_len],
|
||||
)
|
||||
hidden_states = self.reshape(
|
||||
hidden_states,
|
||||
[self.batch_size, n_rep * self.num_key_value_heads, self.head_dim, self.kv_seq_len],
|
||||
)
|
||||
return hidden_states
|
||||
|
||||
def build_decoder(
|
||||
self,
|
||||
hidden_states,
|
||||
|
|
@ -286,157 +201,31 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
|
|||
):
|
||||
|
||||
residual = hidden_states
|
||||
|
||||
input_2d = self.reshape(hidden_states, (self.batch_size * self.seq_len, self.hidden_size))
|
||||
|
||||
# input layernorm
|
||||
input_2d = self.convert_to_fp32(input_2d)
|
||||
variance = self.reduce_mean(
|
||||
self.power(input_2d, self.constant(np.array([[2]], dtype=np.float32))),
|
||||
-1,
|
||||
keep_dims=True,
|
||||
input_2d = self.layer_norm(input_2d, input_layernorm_weight)
|
||||
attn_output, new_key_states, new_value_states = self.attention(
|
||||
hidden_states=input_2d,
|
||||
position_ids=position_ids,
|
||||
attention_mask=attention_mask,
|
||||
past_key=past_key,
|
||||
past_value=past_value,
|
||||
cos=self.cos,
|
||||
sin=self.sin,
|
||||
mode=self.mode,
|
||||
num_heads=self.num_heads,
|
||||
num_key_value_heads=self.num_key_value_heads,
|
||||
head_dim=self.head_dim,
|
||||
seq_len=self.seq_len,
|
||||
)
|
||||
eps = self.constant(self.rms_norm_eps)
|
||||
input_2d = self.eltwise_div(input_2d, self.sqrt(self.eltwise_add(variance, eps)))
|
||||
input_layernorm_weight = self.convert_to_fp32(input_layernorm_weight)
|
||||
input_2d = self.eltwise_mul(input_layernorm_weight, input_2d)
|
||||
input_2d = self.convert_to_fp16(input_2d)
|
||||
|
||||
# attention
|
||||
query_states = self.linear(
|
||||
input_2d,
|
||||
self.num_heads * self.head_dim,
|
||||
self.hidden_size,
|
||||
bias=False,
|
||||
wt_dtype=self.dtype,
|
||||
)
|
||||
key_states = self.linear(
|
||||
input_2d,
|
||||
self.num_key_value_heads * self.head_dim,
|
||||
self.hidden_size,
|
||||
bias=False,
|
||||
wt_dtype=self.dtype,
|
||||
)
|
||||
value_states = self.linear(
|
||||
input_2d,
|
||||
self.num_key_value_heads * self.head_dim,
|
||||
self.hidden_size,
|
||||
bias=False,
|
||||
wt_dtype=self.dtype,
|
||||
)
|
||||
|
||||
query_states = self.reshape(
|
||||
query_states, [self.batch_size, self.seq_len, self.num_heads, self.head_dim]
|
||||
)
|
||||
key_states = self.reshape(
|
||||
key_states, [self.batch_size, self.seq_len, self.num_key_value_heads, self.head_dim]
|
||||
)
|
||||
value_states = self.reshape(
|
||||
value_states, [self.batch_size, self.seq_len, self.num_key_value_heads, self.head_dim]
|
||||
)
|
||||
|
||||
query_states = self.transpose(query_states, [0, 2, 1, 3])
|
||||
key_states = self.transpose(key_states, [0, 2, 1, 3])
|
||||
if self.transpose_value:
|
||||
value_states = self.transpose(value_states, [0, 2, 3, 1])
|
||||
else:
|
||||
value_states = self.transpose(value_states, [0, 2, 1, 3])
|
||||
|
||||
query_states, key_states = self.apply_rotary_pos_emb(
|
||||
query_states, key_states, self.cos, self.sin, position_ids
|
||||
)
|
||||
new_key_states = key_states
|
||||
new_value_states = value_states
|
||||
|
||||
if self.mode == "decode":
|
||||
key_states = self.concat(past_key, key_states, axis=-2)
|
||||
if self.transpose_value:
|
||||
value_states = self.concat(past_value, value_states, axis=-1)
|
||||
else:
|
||||
value_states = self.concat(past_value, value_states, axis=-2)
|
||||
|
||||
key_states = self.repeat_kv(key_states, self.num_key_value_groups)
|
||||
value_states = self.repeat_kv(value_states, self.num_key_value_groups, self.transpose_value)
|
||||
|
||||
attn_weight = self.matmul(query_states, key_states, False, True) / (
|
||||
math.sqrt(self.head_dim)
|
||||
)
|
||||
attn_weight = self.eltwise_add(attn_weight, attention_mask)
|
||||
attn_weight = self.convert_to_fp32(attn_weight)
|
||||
attn_weight = self.softmax(attn_weight, -1)
|
||||
attn_weight = self.convert_to_fp16(attn_weight)
|
||||
attn_output = self.matmul(attn_weight, value_states, False, self.transpose_value)
|
||||
|
||||
attn_output = self.transpose(attn_output, [0, 2, 1, 3])
|
||||
attn_output = self.reshape(attn_output, [self.batch_size, self.seq_len, self.hidden_size])
|
||||
|
||||
attn_output = self.linear(
|
||||
attn_output, self.hidden_size, self.hidden_size, bias=False, wt_dtype=self.dtype
|
||||
)
|
||||
|
||||
hidden_states = self.eltwise_add(residual, attn_output)
|
||||
|
||||
# Fully Connected
|
||||
residual = hidden_states
|
||||
# post_attention_layernorm forward
|
||||
|
||||
hidden_states = self.convert_to_fp32(hidden_states)
|
||||
variance = self.reduce_mean(
|
||||
self.power(hidden_states, self.constant(np.array([[[2]]], dtype=np.float32))),
|
||||
-1,
|
||||
keep_dims=True,
|
||||
)
|
||||
hidden_states = self.eltwise_div(hidden_states, self.sqrt(self.eltwise_add(variance, eps)))
|
||||
post_attention_layernorm_weight = self.convert_to_fp32(post_attention_layernorm_weight)
|
||||
hidden_states = self.eltwise_mul(post_attention_layernorm_weight, hidden_states)
|
||||
hidden_states = self.convert_to_fp16(hidden_states)
|
||||
|
||||
# mlp
|
||||
mm1 = self.linear(
|
||||
hidden_states, self.intermediate_size, self.hidden_size, bias=False, wt_dtype=self.dtype
|
||||
)
|
||||
mm2 = self.linear(
|
||||
hidden_states, self.intermediate_size, self.hidden_size, bias=False, wt_dtype=self.dtype
|
||||
) # type: ignore[attr-defined]
|
||||
mm1 = self.eltwise_mul(self.swish(mm1), mm2) # type: ignore[attr-defined]
|
||||
hidden_states = self.linear(
|
||||
mm1, self.hidden_size, self.intermediate_size, bias=False, wt_dtype=self.dtype
|
||||
)
|
||||
|
||||
hidden_states = self.layer_norm(hidden_states, post_attention_layernorm_weight)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
hidden_states = self.eltwise_add(residual, hidden_states)
|
||||
hidden_states = self.convert_to_fp16(hidden_states)
|
||||
|
||||
return hidden_states, new_key_states, new_value_states
|
||||
|
||||
def rotate_half(self, x):
|
||||
x1 = self.slice(
|
||||
x,
|
||||
[0, 0, 0, 0],
|
||||
[self.batch_size, self.num_heads, self.seq_len, self.head_dim // 2],
|
||||
)
|
||||
x2 = self.slice(
|
||||
x,
|
||||
[0, 0, 0, self.head_dim // 2],
|
||||
[self.batch_size, self.num_heads, self.seq_len, self.head_dim],
|
||||
)
|
||||
return self.concat(self.negative(x2), x1, axis=-1)
|
||||
|
||||
def apply_rotary_pos_emb(self, q, k, cos, sin, position_ids):
|
||||
position_ids = self.squeeze(position_ids)
|
||||
cos = self.gather(cos, self.convert_to_int32(position_ids), self.constant(1), 0)
|
||||
sin = self.gather(sin, self.convert_to_int32(position_ids), self.constant(1), 0)
|
||||
cos = self.unsqueeze(cos, [1])
|
||||
sin = self.unsqueeze(sin, [1])
|
||||
|
||||
q_embed = self.eltwise_add(
|
||||
self.eltwise_mul(q, cos), self.eltwise_mul(self.rotate_half(q), sin)
|
||||
)
|
||||
k_embed = self.eltwise_add(
|
||||
self.eltwise_mul(k, cos), self.eltwise_mul(self.rotate_half(k), sin)
|
||||
)
|
||||
|
||||
return q_embed, k_embed
|
||||
|
||||
|
||||
class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
|
||||
|
||||
|
|
@ -479,8 +268,6 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
|
|||
|
||||
self.intra_stages = intra_stages
|
||||
self.layer_indexes = layer_indexes
|
||||
self.num_layers_1 = len(self.layer_indexes) // 2
|
||||
self.num_layers_0 = len(self.layer_indexes) - self.num_layers_1
|
||||
num_layers = len(self.layer_indexes) // intra_stages
|
||||
self.layer_ranges = []
|
||||
for i in range(intra_stages):
|
||||
|
|
@ -515,16 +302,7 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
|
|||
|
||||
for i in range(intra_stages):
|
||||
start, end = self.layer_ranges[i]
|
||||
num_intra_layers = end - start
|
||||
self.backend_decoders[i].setWeights(
|
||||
3 + (num_intra_layers) * 2, self.op_id, *op_parameters[start * 7:end * 7]
|
||||
)
|
||||
with FileLock(f"decoder_run.lock"):
|
||||
backend_lib.run(self.backend_decoders[i]._mm)
|
||||
|
||||
self.kv_cache_c_parameter_handel = []
|
||||
self.kv_cache_parameters = []
|
||||
self.kv_cache_prefetched = False
|
||||
self.backend_decoders[i].set_weights(self.op_id, op_parameters[start * 7:end * 7])
|
||||
|
||||
def forward(
|
||||
self,
|
||||
|
|
@ -544,76 +322,22 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
|
|||
position_ids,
|
||||
)
|
||||
|
||||
if len(self.kv_cache_parameters) > 0:
|
||||
# the case kv cache changed
|
||||
cached_prt = self.kv_cache_parameters[0].storage().data_ptr()
|
||||
current_ptr = past_key_value.key_cache[self.layer_indexes[0]].storage().data_ptr()
|
||||
if cached_prt != current_ptr:
|
||||
self.kv_cache_parameters = []
|
||||
self.kv_cache_c_parameter_handel = []
|
||||
self.kv_cache_prefetched = False
|
||||
|
||||
if len(self.kv_cache_parameters) == 0:
|
||||
for idx in self.layer_indexes:
|
||||
past_key = past_key_value.key_cache[idx]
|
||||
past_value = past_key_value.value_cache[idx]
|
||||
|
||||
invalidInputError(
|
||||
past_key.dtype == torch.float16, f"past_key dtype is {past_key.dtype}"
|
||||
)
|
||||
|
||||
new_size = (past_key.size(0), past_key.size(1), self.max_seq_len, past_key.size(3))
|
||||
past_key = past_key.as_strided(new_size, past_key.stride(), storage_offset=0)
|
||||
invalidInputError(past_key.is_contiguous(), "past_key is not contiguous")
|
||||
past_value = past_value.as_strided(new_size, past_value.stride(), storage_offset=0)
|
||||
if self.transpose_value:
|
||||
past_value = past_value.transpose(-1, -2)
|
||||
invalidInputError(past_value.is_contiguous(), "past_value is not contiguous")
|
||||
|
||||
self.kv_cache_parameters.append(past_key)
|
||||
self.kv_cache_parameters.append(past_value)
|
||||
|
||||
for i in range(self.intra_stages):
|
||||
start, end = self.layer_ranges[i]
|
||||
layer_kv_cache = self.kv_cache_parameters[start * 2:end * 2]
|
||||
layer_kv_cache = [p.numpy() for p in layer_kv_cache]
|
||||
handle = self.backend_decoders[i].create_parameters(layer_kv_cache)
|
||||
self.kv_cache_c_parameter_handel.append(handle)
|
||||
self.backend_decoders[i].update_cache(past_key_value, self.layer_indexes[start:end])
|
||||
|
||||
x_np = [elem.to(torch.float16).numpy() for elem in inputs]
|
||||
|
||||
with record_function(f"npu_factory"):
|
||||
if not self.kv_cache_prefetched:
|
||||
for i in range(self.intra_stages):
|
||||
self.backend_decoders[i].load_wt_fn(
|
||||
len(inputs),
|
||||
self.backend_decoders[i]._mm,
|
||||
self.kv_cache_c_parameter_handel[i],
|
||||
)
|
||||
|
||||
array_type = ctypes.POINTER(ctypes.c_char) * self.intra_stages
|
||||
models_ptr = array_type(
|
||||
*[self.backend_decoders[i]._mm for i in range(self.intra_stages)]
|
||||
)
|
||||
inputs_ptr = (ctypes.c_void_p * 3)(
|
||||
x_np[0].ctypes.data_as(ctypes.c_void_p),
|
||||
x_np[1].ctypes.data_as(ctypes.c_void_p),
|
||||
x_np[2].ctypes.data_as(ctypes.c_void_p),
|
||||
)
|
||||
t0 = time.perf_counter()
|
||||
backend_lib.run_decoders(models_ptr, inputs_ptr, self.intra_stages, 3)
|
||||
t1 = time.perf_counter()
|
||||
|
||||
hidden_states = self.backend_decoders[-1].torch_out[0]
|
||||
hidden_states, new_keys, new_values = LowBitLlamaMultiDecoderlayer.run_decoders(
|
||||
inputs,
|
||||
decoders=self.backend_decoders)
|
||||
|
||||
if self.do_print:
|
||||
print("outputs:", hidden_states)
|
||||
|
||||
outputs = (hidden_states,)
|
||||
outputs += (past_key_value,)
|
||||
return outputs, t1 - t0
|
||||
outputs += (past_key_value, new_keys, new_values)
|
||||
return outputs
|
||||
|
||||
def post_forward(self, past_key_value, cache_position):
|
||||
def post_forward(self, past_key_value, new_keys, new_values, cache_position):
|
||||
key_value_states = []
|
||||
for i in range(self.intra_stages):
|
||||
for j in range(1, len(self.backend_decoders[i].torch_out)):
|
||||
|
|
@ -626,17 +350,14 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
|
|||
}
|
||||
for i in range(len(self.layer_indexes)):
|
||||
key_states, value_states = past_key_value.update(
|
||||
key_value_states[2 * i],
|
||||
key_value_states[2 * i + 1],
|
||||
new_keys[i],
|
||||
new_values[i],
|
||||
self.layer_indexes[i],
|
||||
cache_kwargs,
|
||||
)
|
||||
|
||||
for i in range(self.intra_stages):
|
||||
self.backend_decoders[i].load_wt_fn(
|
||||
3, self.backend_decoders[i]._mm, self.kv_cache_c_parameter_handel[i]
|
||||
)
|
||||
self.kv_cache_prefetched = True
|
||||
self.backend_decoders[i].load_cache_async()
|
||||
|
||||
|
||||
class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
|
||||
|
|
@ -843,7 +564,7 @@ def run_decode(
|
|||
padded_causal_mask[:, :, :, -1] = 0.0
|
||||
dist.recv(hidden_states, src=rank - 1)
|
||||
t1 = time.perf_counter()
|
||||
layer_outputs, elapse = multi_decoder(
|
||||
layer_outputs = multi_decoder(
|
||||
hidden_states,
|
||||
attention_mask=padded_causal_mask,
|
||||
position_ids=position_ids,
|
||||
|
|
@ -857,7 +578,10 @@ def run_decode(
|
|||
t3 = time.perf_counter()
|
||||
dist.send(hidden_states, dst=(rank + 1) % world_size)
|
||||
t4 = time.perf_counter()
|
||||
multi_decoder.post_forward(past_key_values, cache_position)
|
||||
past_key_values = layer_outputs[1]
|
||||
new_keys = layer_outputs[2]
|
||||
new_values = layer_outputs[3]
|
||||
multi_decoder.post_forward(past_key_values, new_keys, new_values, cache_position)
|
||||
|
||||
|
||||
class DecodeRunner:
|
||||
|
|
|
|||
|
|
@ -0,0 +1,418 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import torch
|
||||
from intel_npu_acceleration_library.backend.factory import NNFactory
|
||||
from typing import List, Union, Any
|
||||
from intel_npu_acceleration_library.backend.runtime import set_contiguous, record_function
|
||||
from intel_npu_acceleration_library.backend.runtime import adapt_output_tensor, _model_cache
|
||||
from collections import deque
|
||||
from intel_npu_acceleration_library.backend.bindings import lib as backend_lib
|
||||
from ipex_llm.utils.common import invalidInputError
|
||||
from transformers.utils import logging
|
||||
from filelock import FileLock
|
||||
import ctypes
|
||||
import math
|
||||
import numpy as np
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def run_model(
|
||||
x: Union[torch.Tensor, List[torch.Tensor]],
|
||||
weights: List[torch.Tensor],
|
||||
backend_cls: Any,
|
||||
op_id: str,
|
||||
replica: int = 1,
|
||||
) -> torch.Tensor:
|
||||
global _model_cache
|
||||
import time
|
||||
|
||||
t0 = time.perf_counter()
|
||||
|
||||
# Use or not op_id depending on the class used
|
||||
op_kwargs = {"op_id": op_id} if op_id else {}
|
||||
|
||||
if not isinstance(x, (list, tuple)):
|
||||
x = [x]
|
||||
|
||||
# Reshape input
|
||||
input_dtype = x[0].dtype
|
||||
x_np = [set_contiguous(elem).to(torch.float16).numpy() for elem in x]
|
||||
op_args = []
|
||||
op_args_flatten = []
|
||||
for w in weights:
|
||||
if isinstance(w, tuple): # from QuantizedLinear
|
||||
op_args.append((set_contiguous(w[0]).numpy(), set_contiguous(w[1]).numpy()))
|
||||
op_args_flatten.append(op_args[-1][0])
|
||||
op_args_flatten.append(op_args[-1][1])
|
||||
else:
|
||||
op_args.append(set_contiguous(w).to(torch.float16).numpy())
|
||||
op_args_flatten.append(op_args[-1])
|
||||
|
||||
shape_dtype_signature = "_".join(
|
||||
["_".join(str(dim) for dim in t.shape) + f"_{t.dtype}" for t in x_np + op_args_flatten]
|
||||
)
|
||||
key = f"{backend_cls.func.__name__}_{shape_dtype_signature}"
|
||||
models = _model_cache.get(key, None)
|
||||
|
||||
input_shapes = [elem.shape for elem in x_np]
|
||||
if models is None:
|
||||
_model_cache[key] = deque([backend_cls(*input_shapes) for i in range(replica)])
|
||||
elif len(models) < 1:
|
||||
_model_cache[key].append(backend_cls(*input_shapes))
|
||||
else:
|
||||
_model_cache[key].rotate(1)
|
||||
|
||||
# Get the model
|
||||
model = _model_cache[key][0]
|
||||
|
||||
with record_function(f"npu_factory_mul_{key}"):
|
||||
ret = model.run(x_np, *op_args, **op_kwargs)
|
||||
|
||||
if isinstance(ret, list):
|
||||
results = [adapt_output_tensor(r, r.shape, input_dtype) for r in ret]
|
||||
else:
|
||||
results = adapt_output_tensor(ret, ret.shape, input_dtype)
|
||||
|
||||
return results
|
||||
|
||||
|
||||
class LLMBaseNNFactory(NNFactory):
|
||||
|
||||
def __init__(self, max_seq_len, transpose_value, dtype, profile=False, device="NPU"):
|
||||
super().__init__(profile, device)
|
||||
self.cache_parameter_ops = []
|
||||
self.input_ops = []
|
||||
self.linear_ops = []
|
||||
self.kv_cache_c_handle = None
|
||||
self.kv_cache_torch = []
|
||||
self.max_seq_len = max_seq_len
|
||||
self.transpose_value = transpose_value
|
||||
self.dtype = dtype
|
||||
|
||||
def attention(self,
|
||||
*,
|
||||
hidden_states,
|
||||
position_ids,
|
||||
attention_mask,
|
||||
past_key,
|
||||
past_value,
|
||||
cos,
|
||||
sin,
|
||||
mode,
|
||||
num_heads,
|
||||
num_key_value_heads,
|
||||
head_dim,
|
||||
seq_len):
|
||||
hidden_size = num_heads * head_dim
|
||||
num_key_value_groups = num_heads // num_key_value_heads
|
||||
query_states = self.linear(
|
||||
hidden_states,
|
||||
num_heads * head_dim,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
wt_dtype=self.dtype,
|
||||
)
|
||||
key_states = self.linear(
|
||||
hidden_states,
|
||||
num_key_value_heads * head_dim,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
wt_dtype=self.dtype,
|
||||
)
|
||||
value_states = self.linear(
|
||||
hidden_states,
|
||||
num_key_value_heads * head_dim,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
wt_dtype=self.dtype,
|
||||
)
|
||||
|
||||
query_states = self.reshape(
|
||||
query_states, [1, seq_len, num_heads, head_dim]
|
||||
)
|
||||
key_states = self.reshape(
|
||||
key_states, [1, seq_len, num_key_value_heads, head_dim]
|
||||
)
|
||||
value_states = self.reshape(
|
||||
value_states, [1, seq_len, num_key_value_heads, head_dim]
|
||||
)
|
||||
|
||||
query_states = self.transpose(query_states, [0, 2, 1, 3])
|
||||
key_states = self.transpose(key_states, [0, 2, 1, 3])
|
||||
if self.transpose_value:
|
||||
value_states = self.transpose(value_states, [0, 2, 3, 1])
|
||||
else:
|
||||
value_states = self.transpose(value_states, [0, 2, 1, 3])
|
||||
|
||||
query_states, key_states = self.apply_rotary_pos_emb(
|
||||
q=query_states,
|
||||
k=key_states,
|
||||
cos=cos,
|
||||
sin=sin,
|
||||
position_ids=position_ids,
|
||||
num_heads=num_heads,
|
||||
seq_len=seq_len,
|
||||
head_dim=head_dim,
|
||||
)
|
||||
new_key_states = key_states
|
||||
new_value_states = value_states
|
||||
|
||||
if mode == "decode":
|
||||
key_states = self.concat(past_key, key_states, axis=-2)
|
||||
if self.transpose_value:
|
||||
value_states = self.concat(past_value, value_states, axis=-1)
|
||||
else:
|
||||
value_states = self.concat(past_value, value_states, axis=-2)
|
||||
kv_seq_len = self.max_seq_len + 1
|
||||
else:
|
||||
kv_seq_len = seq_len
|
||||
|
||||
key_states = self.repeat_kv(hidden_states=key_states,
|
||||
n_rep=num_key_value_groups,
|
||||
num_key_value_heads=num_key_value_heads,
|
||||
kv_seq_len=kv_seq_len,
|
||||
head_dim=head_dim,)
|
||||
value_states = self.repeat_kv(hidden_states=value_states,
|
||||
n_rep=num_key_value_groups,
|
||||
num_key_value_heads=num_key_value_heads,
|
||||
kv_seq_len=kv_seq_len,
|
||||
head_dim=head_dim,)
|
||||
attn_weight = self.matmul(query_states, key_states, False, True) / (
|
||||
math.sqrt(head_dim)
|
||||
)
|
||||
attn_weight = self.eltwise_add(attn_weight, attention_mask)
|
||||
attn_weight = self.convert_to_fp32(attn_weight)
|
||||
attn_weight = self.softmax(attn_weight, -1)
|
||||
attn_weight = self.convert_to_fp16(attn_weight)
|
||||
attn_output = self.matmul(attn_weight, value_states, False, self.transpose_value)
|
||||
|
||||
attn_output = self.transpose(attn_output, [0, 2, 1, 3])
|
||||
attn_output = self.reshape(attn_output, [1, seq_len, hidden_size])
|
||||
|
||||
attn_output = self.linear(
|
||||
attn_output, hidden_size, hidden_size, bias=False, wt_dtype=self.dtype
|
||||
)
|
||||
|
||||
return attn_output, new_key_states, new_value_states
|
||||
|
||||
def mlp(self, hidden_states):
|
||||
mm1 = self.linear(
|
||||
hidden_states, self.intermediate_size, self.hidden_size, bias=False, wt_dtype=self.dtype
|
||||
)
|
||||
mm2 = self.linear(
|
||||
hidden_states, self.intermediate_size, self.hidden_size, bias=False, wt_dtype=self.dtype
|
||||
) # type: ignore[attr-defined]
|
||||
mm1 = self.eltwise_mul(self.swish(mm1), mm2) # type: ignore[attr-defined]
|
||||
hidden_states = self.linear(
|
||||
mm1, self.hidden_size, self.intermediate_size, bias=False, wt_dtype=self.dtype
|
||||
)
|
||||
return hidden_states
|
||||
|
||||
def layer_norm(self, hidden_states, layernorm_weight):
|
||||
hidden_states = self.convert_to_fp32(hidden_states)
|
||||
variance = self.reduce_mean(
|
||||
self.power(hidden_states, self.constant(np.array([[2]], dtype=np.float32))),
|
||||
-1,
|
||||
keep_dims=True,
|
||||
)
|
||||
eps = self.constant(self.rms_norm_eps)
|
||||
hidden_states = self.eltwise_div(hidden_states, self.sqrt(self.eltwise_add(variance, eps)))
|
||||
layernorm_weight = self.convert_to_fp32(layernorm_weight)
|
||||
hidden_states = self.eltwise_mul(layernorm_weight, hidden_states)
|
||||
hidden_states = self.convert_to_fp16(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
def rotate_half(self, x, *, num_heads, seq_len, head_dim):
|
||||
x1 = self.slice(
|
||||
x,
|
||||
[0, 0, 0, 0],
|
||||
[1, num_heads, seq_len, head_dim // 2],
|
||||
)
|
||||
x2 = self.slice(
|
||||
x,
|
||||
[0, 0, 0, head_dim // 2],
|
||||
[1, num_heads, seq_len, head_dim],
|
||||
)
|
||||
return self.concat(self.negative(x2), x1, axis=-1)
|
||||
|
||||
def apply_rotary_pos_emb(self, *, q, k, cos, sin, position_ids,
|
||||
num_heads, seq_len, head_dim):
|
||||
position_ids = self.squeeze(position_ids)
|
||||
cos = self.gather(cos, self.convert_to_int32(position_ids), self.constant(1), 0)
|
||||
sin = self.gather(sin, self.convert_to_int32(position_ids), self.constant(1), 0)
|
||||
cos = self.unsqueeze(cos, [1])
|
||||
sin = self.unsqueeze(sin, [1])
|
||||
|
||||
rotate_half_q = self.rotate_half(q,
|
||||
num_heads=num_heads,
|
||||
seq_len=seq_len,
|
||||
head_dim=head_dim)
|
||||
rotate_half_k = self.rotate_half(k,
|
||||
num_heads=num_heads,
|
||||
seq_len=seq_len,
|
||||
head_dim=head_dim)
|
||||
|
||||
q_embed = self.eltwise_add(
|
||||
self.eltwise_mul(q, cos), self.eltwise_mul(rotate_half_q, sin)
|
||||
)
|
||||
k_embed = self.eltwise_add(
|
||||
self.eltwise_mul(k, cos), self.eltwise_mul(rotate_half_k, sin)
|
||||
)
|
||||
|
||||
return q_embed, k_embed
|
||||
|
||||
def repeat_kv(self, *, hidden_states, n_rep, num_key_value_heads,
|
||||
kv_seq_len, head_dim, transpose=False):
|
||||
if n_rep == 1:
|
||||
return hidden_states
|
||||
if not transpose:
|
||||
hidden_states = self.reshape(
|
||||
hidden_states,
|
||||
[1, num_key_value_heads, 1, kv_seq_len, head_dim],
|
||||
)
|
||||
hidden_states = self.broadcast(
|
||||
hidden_states,
|
||||
[1, num_key_value_heads, n_rep, kv_seq_len, head_dim],
|
||||
)
|
||||
hidden_states = self.reshape(
|
||||
hidden_states,
|
||||
[1, n_rep * num_key_value_heads, kv_seq_len, head_dim],
|
||||
)
|
||||
else:
|
||||
hidden_states = self.reshape(
|
||||
hidden_states,
|
||||
[1, num_key_value_heads, 1, head_dim, kv_seq_len],
|
||||
)
|
||||
hidden_states = self.broadcast(
|
||||
hidden_states,
|
||||
[1, num_key_value_heads, n_rep, head_dim, kv_seq_len],
|
||||
)
|
||||
hidden_states = self.reshape(
|
||||
hidden_states,
|
||||
[1, n_rep * num_key_value_heads, head_dim, kv_seq_len],
|
||||
)
|
||||
return hidden_states
|
||||
|
||||
def create_cache_op(self, shape):
|
||||
invalidInputError(len(self.linear_ops) == 0,
|
||||
"create_cache_op should be called before any linear op")
|
||||
op = super().parameter(shape)
|
||||
self.cache_parameter_ops.append(op)
|
||||
return op
|
||||
|
||||
def create_input_op(self, shape):
|
||||
invalidInputError(len(self.cache_parameter_ops) == 0,
|
||||
"create_input_op should be called before any create_cache_op")
|
||||
invalidInputError(len(self.linear_ops) == 0,
|
||||
"create_input_op should be called before any linear op")
|
||||
|
||||
op = super().parameter(shape)
|
||||
self.input_ops.append(op)
|
||||
return op
|
||||
|
||||
def linear(self, *args, **kwargs):
|
||||
op = super().linear(*args, **kwargs)
|
||||
self.linear_ops.append(op)
|
||||
return op
|
||||
|
||||
def parameter(self, shape):
|
||||
invalidInputError(False,
|
||||
("parameter should not be called directly, "
|
||||
"use create_cache_op or create_input_op instead"))
|
||||
|
||||
def update_cache(self, past_key_value, indexes):
|
||||
|
||||
if self.kv_cache_c_handle is not None:
|
||||
curr_ptr = self.kv_cache_torch[0].storage().data_ptr()
|
||||
new_ptr = past_key_value.key_cache[indexes[0]].storage().data_ptr()
|
||||
if curr_ptr != new_ptr:
|
||||
backend_lib.destroyParameters(self.kv_cache_c_handle)
|
||||
self.kv_cache_c_handle = None
|
||||
self.kv_cache_torch = []
|
||||
if self.kv_cache_c_handle is None:
|
||||
for idx in indexes:
|
||||
past_key = past_key_value.key_cache[idx]
|
||||
past_value = past_key_value.value_cache[idx]
|
||||
invalidInputError(
|
||||
past_key.dtype == torch.float16, f"past_key dtype is {past_key.dtype}"
|
||||
)
|
||||
new_size = (past_key.size(0), past_key.size(1), self.max_seq_len, past_key.size(3))
|
||||
past_key = past_key.as_strided(new_size, past_key.stride(), storage_offset=0)
|
||||
invalidInputError(past_key.is_contiguous(), "past_key is not contiguous")
|
||||
past_value = past_value.as_strided(new_size, past_value.stride(), storage_offset=0)
|
||||
if self.transpose_value:
|
||||
past_value = past_value.transpose(-1, -2)
|
||||
invalidInputError(past_value.is_contiguous(), "past_value is not contiguous")
|
||||
|
||||
self.kv_cache_torch.append(past_key)
|
||||
self.kv_cache_torch.append(past_value)
|
||||
|
||||
layer_kv_cache_np = [p.numpy() for p in self.kv_cache_torch]
|
||||
invalidInputError(len(self.cache_parameter_ops) == len(layer_kv_cache_np),
|
||||
(f"kv_cache size does not match graph, "
|
||||
f"with kv_cache size: {len(layer_kv_cache_np)} and"
|
||||
f" graph size: {len(self.cache_parameter_ops)}")
|
||||
)
|
||||
self.kv_cache_c_handle = self.create_parameters(layer_kv_cache_np)
|
||||
self.load_cache_async()
|
||||
|
||||
def load_cache_async(self):
|
||||
self.load_wt_fn(len(self.input_ops), self._mm, self.kv_cache_c_handle)
|
||||
|
||||
def set_weights(self, op_id, weights):
|
||||
self.set_weights_async(op_id, weights)
|
||||
with FileLock(f"decoder_run.lock"):
|
||||
backend_lib.run(self._mm)
|
||||
|
||||
def set_weights_async(self, op_id, weights):
|
||||
offset = len(self.input_ops) + len(self.cache_parameter_ops)
|
||||
invalidInputError(len(weights) == len(self.linear_ops),
|
||||
(f"weights size does not match graph, "
|
||||
f"with weights size: {len(weights)} and "
|
||||
f" graph linear size: {len(self.linear_ops)}"))
|
||||
self.setWeights(offset, op_id, *weights)
|
||||
|
||||
@staticmethod
|
||||
def run_decoders(inputs, decoders):
|
||||
x_np = [elem.to(torch.float16).numpy() for elem in inputs]
|
||||
|
||||
num_decoders = len(decoders)
|
||||
num_inputs = len(x_np)
|
||||
|
||||
with record_function(f"npu_factory"):
|
||||
|
||||
array_type = ctypes.POINTER(ctypes.c_char) * num_decoders
|
||||
models_ptr = array_type(
|
||||
*[decoders[i]._mm for i in range(num_decoders)]
|
||||
)
|
||||
inputs_ptr = (ctypes.c_void_p * num_inputs)(
|
||||
*[x.ctypes.data_as(ctypes.c_void_p) for x in x_np]
|
||||
)
|
||||
backend_lib.run_decoders(models_ptr, inputs_ptr, num_decoders, num_inputs)
|
||||
|
||||
hidden_states = decoders[-1].torch_out[0]
|
||||
new_key_states = []
|
||||
new_value_states = []
|
||||
for i in range(num_decoders):
|
||||
for j in range(1, len(decoders[i].torch_out)):
|
||||
if j % 2 == 1:
|
||||
new_key_states.append(decoders[i].torch_out[j])
|
||||
else:
|
||||
new_value_states.append(decoders[i].torch_out[j])
|
||||
return hidden_states, new_key_states, new_value_states
|
||||
Loading…
Reference in a new issue