Refactor npu mp to make it easier to integrate new models (#11873)

* Refactor npu mp to make it easier to integrate new models

* fix style

* move layer functions to base
This commit is contained in:
Yang Wang 2024-08-20 20:58:47 -07:00 committed by GitHub
parent 537c0d2767
commit 209d42ab79
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 470 additions and 328 deletions

View file

@ -48,70 +48,11 @@ from colorama import Fore, Back, Style
import torch.multiprocessing as mp
from transformers.cache_utils import Cache
from transformers.modeling_outputs import BaseModelOutputWithPast
from ipex_llm.transformers.npu_models.mp_models_base import run_model
from ipex_llm.transformers.npu_models.mp_models_base import LLMBaseNNFactory
@torch.no_grad()
def run_model(
x: Union[torch.Tensor, List[torch.Tensor]],
weights: List[torch.Tensor],
backend_cls: Any,
op_id: str,
replica: int = 1,
) -> torch.Tensor:
global _model_cache
import time
t0 = time.perf_counter()
# Use or not op_id depending on the class used
op_kwargs = {"op_id": op_id} if op_id else {}
if not isinstance(x, (list, tuple)):
x = [x]
# Reshape input
input_dtype = x[0].dtype
x_np = [set_contiguous(elem).to(torch.float16).numpy() for elem in x]
op_args = []
op_args_flatten = []
for w in weights:
if isinstance(w, tuple): # from QuantizedLinear
op_args.append((set_contiguous(w[0]).numpy(), set_contiguous(w[1]).numpy()))
op_args_flatten.append(op_args[-1][0])
op_args_flatten.append(op_args[-1][1])
else:
op_args.append(set_contiguous(w).to(torch.float16).numpy())
op_args_flatten.append(op_args[-1])
shape_dtype_signature = "_".join(
["_".join(str(dim) for dim in t.shape) + f"_{t.dtype}" for t in x_np + op_args_flatten]
)
key = f"{backend_cls.func.__name__}_{shape_dtype_signature}"
models = _model_cache.get(key, None)
input_shapes = [elem.shape for elem in x_np]
if models is None:
_model_cache[key] = deque([backend_cls(*input_shapes) for i in range(replica)])
elif len(models) < 1:
_model_cache[key].append(backend_cls(*input_shapes))
else:
_model_cache[key].rotate(1)
# Get the model
model = _model_cache[key][0]
with record_function(f"npu_factory_mul_{key}"):
ret = model.run(x_np, *op_args, **op_kwargs)
if isinstance(ret, list):
results = [adapt_output_tensor(r, r.shape, input_dtype) for r in ret]
else:
results = adapt_output_tensor(ret, ret.shape, input_dtype)
return results
class LowBitLlamaMultiDecoderlayer(NNFactory):
class LowBitLlamaMultiDecoderlayer(LLMBaseNNFactory):
def __init__(
self,
# batch_size: int,
@ -135,7 +76,11 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
rms_norm_eps,
intermediate_size,
):
super().__init__(profile, device)
super().__init__(max_seq_len=max_seq_len,
transpose_value=transpose_value,
dtype=dtype,
profile=profile,
device=device)
self.max_seq_len = max_seq_len
self.intermediate_size = intermediate_size
self.dtype = dtype
@ -145,6 +90,7 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
self.mode = mode
self.rms_norm_eps = rms_norm_eps
self.transpose_value = transpose_value
self.num_layers = num_layers
cos = self.constant(self.cached_cos)
self.cos = self.unsqueeze(cos, axis=0)
@ -164,28 +110,28 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
# define input, the order self.parameter matters
input = self.parameter((self.batch_size, self.seq_len, self.hidden_size))
input = self.create_input_op((self.batch_size, self.seq_len, self.hidden_size))
# Self Attention
if mode == "decode":
attention_mask = self.parameter((self.batch_size, 1, 1, self.max_seq_len + 1))
attention_mask = self.create_input_op((self.batch_size, 1, 1, self.max_seq_len + 1))
else:
attention_mask = self.parameter((self.batch_size, 1, self.seq_len, self.seq_len))
attention_mask = self.create_input_op((self.batch_size, 1, self.seq_len, self.seq_len))
position_ids = self.parameter((self.batch_size, self.seq_len))
position_ids = self.create_input_op((self.batch_size, self.seq_len))
past_keys = []
past_values = []
if mode == "decode":
for i in range(num_layers):
past_key = self.parameter(
past_key = self.create_cache_op(
(self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim)
)
if transpose_value:
past_value = self.parameter(
past_value = self.create_cache_op(
(self.batch_size, self.num_key_value_heads, self.head_dim, self.max_seq_len)
)
else:
past_value = self.parameter(
past_value = self.create_cache_op(
(self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim)
)
past_keys.append(past_key)
@ -199,7 +145,7 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
post_attn_layernorm_weights = []
for i in range(num_layers):
input_layernorm_weights.append(
self.parameter(
self.create_input_op(
(
1,
self.hidden_size,
@ -207,7 +153,7 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
)
)
post_attn_layernorm_weights.append(
self.parameter(
self.create_input_op(
(
1,
self.hidden_size,
@ -243,37 +189,6 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
print("start compiling")
self.compile()
def repeat_kv(self, hidden_states, n_rep, transpose=False):
if n_rep == 1:
return hidden_states
if not transpose:
hidden_states = self.reshape(
hidden_states,
[self.batch_size, self.num_key_value_heads, 1, self.kv_seq_len, self.head_dim],
)
hidden_states = self.broadcast(
hidden_states,
[self.batch_size, self.num_key_value_heads, n_rep, self.kv_seq_len, self.head_dim],
)
hidden_states = self.reshape(
hidden_states,
[self.batch_size, n_rep * self.num_key_value_heads, self.kv_seq_len, self.head_dim],
)
else:
hidden_states = self.reshape(
hidden_states,
[self.batch_size, self.num_key_value_heads, 1, self.head_dim, self.kv_seq_len],
)
hidden_states = self.broadcast(
hidden_states,
[self.batch_size, self.num_key_value_heads, n_rep, self.head_dim, self.kv_seq_len],
)
hidden_states = self.reshape(
hidden_states,
[self.batch_size, n_rep * self.num_key_value_heads, self.head_dim, self.kv_seq_len],
)
return hidden_states
def build_decoder(
self,
hidden_states,
@ -286,157 +201,31 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
):
residual = hidden_states
input_2d = self.reshape(hidden_states, (self.batch_size * self.seq_len, self.hidden_size))
# input layernorm
input_2d = self.convert_to_fp32(input_2d)
variance = self.reduce_mean(
self.power(input_2d, self.constant(np.array([[2]], dtype=np.float32))),
-1,
keep_dims=True,
input_2d = self.layer_norm(input_2d, input_layernorm_weight)
attn_output, new_key_states, new_value_states = self.attention(
hidden_states=input_2d,
position_ids=position_ids,
attention_mask=attention_mask,
past_key=past_key,
past_value=past_value,
cos=self.cos,
sin=self.sin,
mode=self.mode,
num_heads=self.num_heads,
num_key_value_heads=self.num_key_value_heads,
head_dim=self.head_dim,
seq_len=self.seq_len,
)
eps = self.constant(self.rms_norm_eps)
input_2d = self.eltwise_div(input_2d, self.sqrt(self.eltwise_add(variance, eps)))
input_layernorm_weight = self.convert_to_fp32(input_layernorm_weight)
input_2d = self.eltwise_mul(input_layernorm_weight, input_2d)
input_2d = self.convert_to_fp16(input_2d)
# attention
query_states = self.linear(
input_2d,
self.num_heads * self.head_dim,
self.hidden_size,
bias=False,
wt_dtype=self.dtype,
)
key_states = self.linear(
input_2d,
self.num_key_value_heads * self.head_dim,
self.hidden_size,
bias=False,
wt_dtype=self.dtype,
)
value_states = self.linear(
input_2d,
self.num_key_value_heads * self.head_dim,
self.hidden_size,
bias=False,
wt_dtype=self.dtype,
)
query_states = self.reshape(
query_states, [self.batch_size, self.seq_len, self.num_heads, self.head_dim]
)
key_states = self.reshape(
key_states, [self.batch_size, self.seq_len, self.num_key_value_heads, self.head_dim]
)
value_states = self.reshape(
value_states, [self.batch_size, self.seq_len, self.num_key_value_heads, self.head_dim]
)
query_states = self.transpose(query_states, [0, 2, 1, 3])
key_states = self.transpose(key_states, [0, 2, 1, 3])
if self.transpose_value:
value_states = self.transpose(value_states, [0, 2, 3, 1])
else:
value_states = self.transpose(value_states, [0, 2, 1, 3])
query_states, key_states = self.apply_rotary_pos_emb(
query_states, key_states, self.cos, self.sin, position_ids
)
new_key_states = key_states
new_value_states = value_states
if self.mode == "decode":
key_states = self.concat(past_key, key_states, axis=-2)
if self.transpose_value:
value_states = self.concat(past_value, value_states, axis=-1)
else:
value_states = self.concat(past_value, value_states, axis=-2)
key_states = self.repeat_kv(key_states, self.num_key_value_groups)
value_states = self.repeat_kv(value_states, self.num_key_value_groups, self.transpose_value)
attn_weight = self.matmul(query_states, key_states, False, True) / (
math.sqrt(self.head_dim)
)
attn_weight = self.eltwise_add(attn_weight, attention_mask)
attn_weight = self.convert_to_fp32(attn_weight)
attn_weight = self.softmax(attn_weight, -1)
attn_weight = self.convert_to_fp16(attn_weight)
attn_output = self.matmul(attn_weight, value_states, False, self.transpose_value)
attn_output = self.transpose(attn_output, [0, 2, 1, 3])
attn_output = self.reshape(attn_output, [self.batch_size, self.seq_len, self.hidden_size])
attn_output = self.linear(
attn_output, self.hidden_size, self.hidden_size, bias=False, wt_dtype=self.dtype
)
hidden_states = self.eltwise_add(residual, attn_output)
# Fully Connected
residual = hidden_states
# post_attention_layernorm forward
hidden_states = self.convert_to_fp32(hidden_states)
variance = self.reduce_mean(
self.power(hidden_states, self.constant(np.array([[[2]]], dtype=np.float32))),
-1,
keep_dims=True,
)
hidden_states = self.eltwise_div(hidden_states, self.sqrt(self.eltwise_add(variance, eps)))
post_attention_layernorm_weight = self.convert_to_fp32(post_attention_layernorm_weight)
hidden_states = self.eltwise_mul(post_attention_layernorm_weight, hidden_states)
hidden_states = self.convert_to_fp16(hidden_states)
# mlp
mm1 = self.linear(
hidden_states, self.intermediate_size, self.hidden_size, bias=False, wt_dtype=self.dtype
)
mm2 = self.linear(
hidden_states, self.intermediate_size, self.hidden_size, bias=False, wt_dtype=self.dtype
) # type: ignore[attr-defined]
mm1 = self.eltwise_mul(self.swish(mm1), mm2) # type: ignore[attr-defined]
hidden_states = self.linear(
mm1, self.hidden_size, self.intermediate_size, bias=False, wt_dtype=self.dtype
)
hidden_states = self.layer_norm(hidden_states, post_attention_layernorm_weight)
hidden_states = self.mlp(hidden_states)
hidden_states = self.eltwise_add(residual, hidden_states)
hidden_states = self.convert_to_fp16(hidden_states)
return hidden_states, new_key_states, new_value_states
def rotate_half(self, x):
x1 = self.slice(
x,
[0, 0, 0, 0],
[self.batch_size, self.num_heads, self.seq_len, self.head_dim // 2],
)
x2 = self.slice(
x,
[0, 0, 0, self.head_dim // 2],
[self.batch_size, self.num_heads, self.seq_len, self.head_dim],
)
return self.concat(self.negative(x2), x1, axis=-1)
def apply_rotary_pos_emb(self, q, k, cos, sin, position_ids):
position_ids = self.squeeze(position_ids)
cos = self.gather(cos, self.convert_to_int32(position_ids), self.constant(1), 0)
sin = self.gather(sin, self.convert_to_int32(position_ids), self.constant(1), 0)
cos = self.unsqueeze(cos, [1])
sin = self.unsqueeze(sin, [1])
q_embed = self.eltwise_add(
self.eltwise_mul(q, cos), self.eltwise_mul(self.rotate_half(q), sin)
)
k_embed = self.eltwise_add(
self.eltwise_mul(k, cos), self.eltwise_mul(self.rotate_half(k), sin)
)
return q_embed, k_embed
class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
@ -479,8 +268,6 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
self.intra_stages = intra_stages
self.layer_indexes = layer_indexes
self.num_layers_1 = len(self.layer_indexes) // 2
self.num_layers_0 = len(self.layer_indexes) - self.num_layers_1
num_layers = len(self.layer_indexes) // intra_stages
self.layer_ranges = []
for i in range(intra_stages):
@ -515,16 +302,7 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
for i in range(intra_stages):
start, end = self.layer_ranges[i]
num_intra_layers = end - start
self.backend_decoders[i].setWeights(
3 + (num_intra_layers) * 2, self.op_id, *op_parameters[start * 7:end * 7]
)
with FileLock(f"decoder_run.lock"):
backend_lib.run(self.backend_decoders[i]._mm)
self.kv_cache_c_parameter_handel = []
self.kv_cache_parameters = []
self.kv_cache_prefetched = False
self.backend_decoders[i].set_weights(self.op_id, op_parameters[start * 7:end * 7])
def forward(
self,
@ -544,76 +322,22 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
position_ids,
)
if len(self.kv_cache_parameters) > 0:
# the case kv cache changed
cached_prt = self.kv_cache_parameters[0].storage().data_ptr()
current_ptr = past_key_value.key_cache[self.layer_indexes[0]].storage().data_ptr()
if cached_prt != current_ptr:
self.kv_cache_parameters = []
self.kv_cache_c_parameter_handel = []
self.kv_cache_prefetched = False
for i in range(self.intra_stages):
start, end = self.layer_ranges[i]
self.backend_decoders[i].update_cache(past_key_value, self.layer_indexes[start:end])
if len(self.kv_cache_parameters) == 0:
for idx in self.layer_indexes:
past_key = past_key_value.key_cache[idx]
past_value = past_key_value.value_cache[idx]
invalidInputError(
past_key.dtype == torch.float16, f"past_key dtype is {past_key.dtype}"
)
new_size = (past_key.size(0), past_key.size(1), self.max_seq_len, past_key.size(3))
past_key = past_key.as_strided(new_size, past_key.stride(), storage_offset=0)
invalidInputError(past_key.is_contiguous(), "past_key is not contiguous")
past_value = past_value.as_strided(new_size, past_value.stride(), storage_offset=0)
if self.transpose_value:
past_value = past_value.transpose(-1, -2)
invalidInputError(past_value.is_contiguous(), "past_value is not contiguous")
self.kv_cache_parameters.append(past_key)
self.kv_cache_parameters.append(past_value)
for i in range(self.intra_stages):
start, end = self.layer_ranges[i]
layer_kv_cache = self.kv_cache_parameters[start * 2:end * 2]
layer_kv_cache = [p.numpy() for p in layer_kv_cache]
handle = self.backend_decoders[i].create_parameters(layer_kv_cache)
self.kv_cache_c_parameter_handel.append(handle)
x_np = [elem.to(torch.float16).numpy() for elem in inputs]
with record_function(f"npu_factory"):
if not self.kv_cache_prefetched:
for i in range(self.intra_stages):
self.backend_decoders[i].load_wt_fn(
len(inputs),
self.backend_decoders[i]._mm,
self.kv_cache_c_parameter_handel[i],
)
array_type = ctypes.POINTER(ctypes.c_char) * self.intra_stages
models_ptr = array_type(
*[self.backend_decoders[i]._mm for i in range(self.intra_stages)]
)
inputs_ptr = (ctypes.c_void_p * 3)(
x_np[0].ctypes.data_as(ctypes.c_void_p),
x_np[1].ctypes.data_as(ctypes.c_void_p),
x_np[2].ctypes.data_as(ctypes.c_void_p),
)
t0 = time.perf_counter()
backend_lib.run_decoders(models_ptr, inputs_ptr, self.intra_stages, 3)
t1 = time.perf_counter()
hidden_states = self.backend_decoders[-1].torch_out[0]
hidden_states, new_keys, new_values = LowBitLlamaMultiDecoderlayer.run_decoders(
inputs,
decoders=self.backend_decoders)
if self.do_print:
print("outputs:", hidden_states)
outputs = (hidden_states,)
outputs += (past_key_value,)
return outputs, t1 - t0
outputs += (past_key_value, new_keys, new_values)
return outputs
def post_forward(self, past_key_value, cache_position):
def post_forward(self, past_key_value, new_keys, new_values, cache_position):
key_value_states = []
for i in range(self.intra_stages):
for j in range(1, len(self.backend_decoders[i].torch_out)):
@ -626,17 +350,14 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
}
for i in range(len(self.layer_indexes)):
key_states, value_states = past_key_value.update(
key_value_states[2 * i],
key_value_states[2 * i + 1],
new_keys[i],
new_values[i],
self.layer_indexes[i],
cache_kwargs,
)
for i in range(self.intra_stages):
self.backend_decoders[i].load_wt_fn(
3, self.backend_decoders[i]._mm, self.kv_cache_c_parameter_handel[i]
)
self.kv_cache_prefetched = True
self.backend_decoders[i].load_cache_async()
class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
@ -843,7 +564,7 @@ def run_decode(
padded_causal_mask[:, :, :, -1] = 0.0
dist.recv(hidden_states, src=rank - 1)
t1 = time.perf_counter()
layer_outputs, elapse = multi_decoder(
layer_outputs = multi_decoder(
hidden_states,
attention_mask=padded_causal_mask,
position_ids=position_ids,
@ -857,7 +578,10 @@ def run_decode(
t3 = time.perf_counter()
dist.send(hidden_states, dst=(rank + 1) % world_size)
t4 = time.perf_counter()
multi_decoder.post_forward(past_key_values, cache_position)
past_key_values = layer_outputs[1]
new_keys = layer_outputs[2]
new_values = layer_outputs[3]
multi_decoder.post_forward(past_key_values, new_keys, new_values, cache_position)
class DecodeRunner:

View file

@ -0,0 +1,418 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
from intel_npu_acceleration_library.backend.factory import NNFactory
from typing import List, Union, Any
from intel_npu_acceleration_library.backend.runtime import set_contiguous, record_function
from intel_npu_acceleration_library.backend.runtime import adapt_output_tensor, _model_cache
from collections import deque
from intel_npu_acceleration_library.backend.bindings import lib as backend_lib
from ipex_llm.utils.common import invalidInputError
from transformers.utils import logging
from filelock import FileLock
import ctypes
import math
import numpy as np
logger = logging.get_logger(__name__)
@torch.no_grad()
def run_model(
x: Union[torch.Tensor, List[torch.Tensor]],
weights: List[torch.Tensor],
backend_cls: Any,
op_id: str,
replica: int = 1,
) -> torch.Tensor:
global _model_cache
import time
t0 = time.perf_counter()
# Use or not op_id depending on the class used
op_kwargs = {"op_id": op_id} if op_id else {}
if not isinstance(x, (list, tuple)):
x = [x]
# Reshape input
input_dtype = x[0].dtype
x_np = [set_contiguous(elem).to(torch.float16).numpy() for elem in x]
op_args = []
op_args_flatten = []
for w in weights:
if isinstance(w, tuple): # from QuantizedLinear
op_args.append((set_contiguous(w[0]).numpy(), set_contiguous(w[1]).numpy()))
op_args_flatten.append(op_args[-1][0])
op_args_flatten.append(op_args[-1][1])
else:
op_args.append(set_contiguous(w).to(torch.float16).numpy())
op_args_flatten.append(op_args[-1])
shape_dtype_signature = "_".join(
["_".join(str(dim) for dim in t.shape) + f"_{t.dtype}" for t in x_np + op_args_flatten]
)
key = f"{backend_cls.func.__name__}_{shape_dtype_signature}"
models = _model_cache.get(key, None)
input_shapes = [elem.shape for elem in x_np]
if models is None:
_model_cache[key] = deque([backend_cls(*input_shapes) for i in range(replica)])
elif len(models) < 1:
_model_cache[key].append(backend_cls(*input_shapes))
else:
_model_cache[key].rotate(1)
# Get the model
model = _model_cache[key][0]
with record_function(f"npu_factory_mul_{key}"):
ret = model.run(x_np, *op_args, **op_kwargs)
if isinstance(ret, list):
results = [adapt_output_tensor(r, r.shape, input_dtype) for r in ret]
else:
results = adapt_output_tensor(ret, ret.shape, input_dtype)
return results
class LLMBaseNNFactory(NNFactory):
def __init__(self, max_seq_len, transpose_value, dtype, profile=False, device="NPU"):
super().__init__(profile, device)
self.cache_parameter_ops = []
self.input_ops = []
self.linear_ops = []
self.kv_cache_c_handle = None
self.kv_cache_torch = []
self.max_seq_len = max_seq_len
self.transpose_value = transpose_value
self.dtype = dtype
def attention(self,
*,
hidden_states,
position_ids,
attention_mask,
past_key,
past_value,
cos,
sin,
mode,
num_heads,
num_key_value_heads,
head_dim,
seq_len):
hidden_size = num_heads * head_dim
num_key_value_groups = num_heads // num_key_value_heads
query_states = self.linear(
hidden_states,
num_heads * head_dim,
hidden_size,
bias=False,
wt_dtype=self.dtype,
)
key_states = self.linear(
hidden_states,
num_key_value_heads * head_dim,
hidden_size,
bias=False,
wt_dtype=self.dtype,
)
value_states = self.linear(
hidden_states,
num_key_value_heads * head_dim,
hidden_size,
bias=False,
wt_dtype=self.dtype,
)
query_states = self.reshape(
query_states, [1, seq_len, num_heads, head_dim]
)
key_states = self.reshape(
key_states, [1, seq_len, num_key_value_heads, head_dim]
)
value_states = self.reshape(
value_states, [1, seq_len, num_key_value_heads, head_dim]
)
query_states = self.transpose(query_states, [0, 2, 1, 3])
key_states = self.transpose(key_states, [0, 2, 1, 3])
if self.transpose_value:
value_states = self.transpose(value_states, [0, 2, 3, 1])
else:
value_states = self.transpose(value_states, [0, 2, 1, 3])
query_states, key_states = self.apply_rotary_pos_emb(
q=query_states,
k=key_states,
cos=cos,
sin=sin,
position_ids=position_ids,
num_heads=num_heads,
seq_len=seq_len,
head_dim=head_dim,
)
new_key_states = key_states
new_value_states = value_states
if mode == "decode":
key_states = self.concat(past_key, key_states, axis=-2)
if self.transpose_value:
value_states = self.concat(past_value, value_states, axis=-1)
else:
value_states = self.concat(past_value, value_states, axis=-2)
kv_seq_len = self.max_seq_len + 1
else:
kv_seq_len = seq_len
key_states = self.repeat_kv(hidden_states=key_states,
n_rep=num_key_value_groups,
num_key_value_heads=num_key_value_heads,
kv_seq_len=kv_seq_len,
head_dim=head_dim,)
value_states = self.repeat_kv(hidden_states=value_states,
n_rep=num_key_value_groups,
num_key_value_heads=num_key_value_heads,
kv_seq_len=kv_seq_len,
head_dim=head_dim,)
attn_weight = self.matmul(query_states, key_states, False, True) / (
math.sqrt(head_dim)
)
attn_weight = self.eltwise_add(attn_weight, attention_mask)
attn_weight = self.convert_to_fp32(attn_weight)
attn_weight = self.softmax(attn_weight, -1)
attn_weight = self.convert_to_fp16(attn_weight)
attn_output = self.matmul(attn_weight, value_states, False, self.transpose_value)
attn_output = self.transpose(attn_output, [0, 2, 1, 3])
attn_output = self.reshape(attn_output, [1, seq_len, hidden_size])
attn_output = self.linear(
attn_output, hidden_size, hidden_size, bias=False, wt_dtype=self.dtype
)
return attn_output, new_key_states, new_value_states
def mlp(self, hidden_states):
mm1 = self.linear(
hidden_states, self.intermediate_size, self.hidden_size, bias=False, wt_dtype=self.dtype
)
mm2 = self.linear(
hidden_states, self.intermediate_size, self.hidden_size, bias=False, wt_dtype=self.dtype
) # type: ignore[attr-defined]
mm1 = self.eltwise_mul(self.swish(mm1), mm2) # type: ignore[attr-defined]
hidden_states = self.linear(
mm1, self.hidden_size, self.intermediate_size, bias=False, wt_dtype=self.dtype
)
return hidden_states
def layer_norm(self, hidden_states, layernorm_weight):
hidden_states = self.convert_to_fp32(hidden_states)
variance = self.reduce_mean(
self.power(hidden_states, self.constant(np.array([[2]], dtype=np.float32))),
-1,
keep_dims=True,
)
eps = self.constant(self.rms_norm_eps)
hidden_states = self.eltwise_div(hidden_states, self.sqrt(self.eltwise_add(variance, eps)))
layernorm_weight = self.convert_to_fp32(layernorm_weight)
hidden_states = self.eltwise_mul(layernorm_weight, hidden_states)
hidden_states = self.convert_to_fp16(hidden_states)
return hidden_states
def rotate_half(self, x, *, num_heads, seq_len, head_dim):
x1 = self.slice(
x,
[0, 0, 0, 0],
[1, num_heads, seq_len, head_dim // 2],
)
x2 = self.slice(
x,
[0, 0, 0, head_dim // 2],
[1, num_heads, seq_len, head_dim],
)
return self.concat(self.negative(x2), x1, axis=-1)
def apply_rotary_pos_emb(self, *, q, k, cos, sin, position_ids,
num_heads, seq_len, head_dim):
position_ids = self.squeeze(position_ids)
cos = self.gather(cos, self.convert_to_int32(position_ids), self.constant(1), 0)
sin = self.gather(sin, self.convert_to_int32(position_ids), self.constant(1), 0)
cos = self.unsqueeze(cos, [1])
sin = self.unsqueeze(sin, [1])
rotate_half_q = self.rotate_half(q,
num_heads=num_heads,
seq_len=seq_len,
head_dim=head_dim)
rotate_half_k = self.rotate_half(k,
num_heads=num_heads,
seq_len=seq_len,
head_dim=head_dim)
q_embed = self.eltwise_add(
self.eltwise_mul(q, cos), self.eltwise_mul(rotate_half_q, sin)
)
k_embed = self.eltwise_add(
self.eltwise_mul(k, cos), self.eltwise_mul(rotate_half_k, sin)
)
return q_embed, k_embed
def repeat_kv(self, *, hidden_states, n_rep, num_key_value_heads,
kv_seq_len, head_dim, transpose=False):
if n_rep == 1:
return hidden_states
if not transpose:
hidden_states = self.reshape(
hidden_states,
[1, num_key_value_heads, 1, kv_seq_len, head_dim],
)
hidden_states = self.broadcast(
hidden_states,
[1, num_key_value_heads, n_rep, kv_seq_len, head_dim],
)
hidden_states = self.reshape(
hidden_states,
[1, n_rep * num_key_value_heads, kv_seq_len, head_dim],
)
else:
hidden_states = self.reshape(
hidden_states,
[1, num_key_value_heads, 1, head_dim, kv_seq_len],
)
hidden_states = self.broadcast(
hidden_states,
[1, num_key_value_heads, n_rep, head_dim, kv_seq_len],
)
hidden_states = self.reshape(
hidden_states,
[1, n_rep * num_key_value_heads, head_dim, kv_seq_len],
)
return hidden_states
def create_cache_op(self, shape):
invalidInputError(len(self.linear_ops) == 0,
"create_cache_op should be called before any linear op")
op = super().parameter(shape)
self.cache_parameter_ops.append(op)
return op
def create_input_op(self, shape):
invalidInputError(len(self.cache_parameter_ops) == 0,
"create_input_op should be called before any create_cache_op")
invalidInputError(len(self.linear_ops) == 0,
"create_input_op should be called before any linear op")
op = super().parameter(shape)
self.input_ops.append(op)
return op
def linear(self, *args, **kwargs):
op = super().linear(*args, **kwargs)
self.linear_ops.append(op)
return op
def parameter(self, shape):
invalidInputError(False,
("parameter should not be called directly, "
"use create_cache_op or create_input_op instead"))
def update_cache(self, past_key_value, indexes):
if self.kv_cache_c_handle is not None:
curr_ptr = self.kv_cache_torch[0].storage().data_ptr()
new_ptr = past_key_value.key_cache[indexes[0]].storage().data_ptr()
if curr_ptr != new_ptr:
backend_lib.destroyParameters(self.kv_cache_c_handle)
self.kv_cache_c_handle = None
self.kv_cache_torch = []
if self.kv_cache_c_handle is None:
for idx in indexes:
past_key = past_key_value.key_cache[idx]
past_value = past_key_value.value_cache[idx]
invalidInputError(
past_key.dtype == torch.float16, f"past_key dtype is {past_key.dtype}"
)
new_size = (past_key.size(0), past_key.size(1), self.max_seq_len, past_key.size(3))
past_key = past_key.as_strided(new_size, past_key.stride(), storage_offset=0)
invalidInputError(past_key.is_contiguous(), "past_key is not contiguous")
past_value = past_value.as_strided(new_size, past_value.stride(), storage_offset=0)
if self.transpose_value:
past_value = past_value.transpose(-1, -2)
invalidInputError(past_value.is_contiguous(), "past_value is not contiguous")
self.kv_cache_torch.append(past_key)
self.kv_cache_torch.append(past_value)
layer_kv_cache_np = [p.numpy() for p in self.kv_cache_torch]
invalidInputError(len(self.cache_parameter_ops) == len(layer_kv_cache_np),
(f"kv_cache size does not match graph, "
f"with kv_cache size: {len(layer_kv_cache_np)} and"
f" graph size: {len(self.cache_parameter_ops)}")
)
self.kv_cache_c_handle = self.create_parameters(layer_kv_cache_np)
self.load_cache_async()
def load_cache_async(self):
self.load_wt_fn(len(self.input_ops), self._mm, self.kv_cache_c_handle)
def set_weights(self, op_id, weights):
self.set_weights_async(op_id, weights)
with FileLock(f"decoder_run.lock"):
backend_lib.run(self._mm)
def set_weights_async(self, op_id, weights):
offset = len(self.input_ops) + len(self.cache_parameter_ops)
invalidInputError(len(weights) == len(self.linear_ops),
(f"weights size does not match graph, "
f"with weights size: {len(weights)} and "
f" graph linear size: {len(self.linear_ops)}"))
self.setWeights(offset, op_id, *weights)
@staticmethod
def run_decoders(inputs, decoders):
x_np = [elem.to(torch.float16).numpy() for elem in inputs]
num_decoders = len(decoders)
num_inputs = len(x_np)
with record_function(f"npu_factory"):
array_type = ctypes.POINTER(ctypes.c_char) * num_decoders
models_ptr = array_type(
*[decoders[i]._mm for i in range(num_decoders)]
)
inputs_ptr = (ctypes.c_void_p * num_inputs)(
*[x.ctypes.data_as(ctypes.c_void_p) for x in x_np]
)
backend_lib.run_decoders(models_ptr, inputs_ptr, num_decoders, num_inputs)
hidden_states = decoders[-1].torch_out[0]
new_key_states = []
new_value_states = []
for i in range(num_decoders):
for j in range(1, len(decoders[i].torch_out)):
if j % 2 == 1:
new_key_states.append(decoders[i].torch_out[j])
else:
new_value_states.append(decoders[i].torch_out[j])
return hidden_states, new_key_states, new_value_states