LLM: Optimize qwen1.5 moe model (#10706)

* update moe block

* fix style

* enable optmize MLP

* enabel kv_cache

* enable fuse rope

* enable fused qkv

* enable flash_attention

* error sdp quantize

* use old api

* use fuse

* use xetla

* fix python style

* update moe_blocks num

* fix output error

* add cpu sdpa

* update

* update

* update
This commit is contained in:
Wang, Jian4 2024-04-18 14:54:05 +08:00 committed by GitHub
parent ff040c8f01
commit 209c3501e6
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 646 additions and 2 deletions

View file

@ -1154,6 +1154,28 @@ def _optimize_post(model, lightweight_bmm=False):
convert_forward(model,
module.Qwen2Attention,
qwen2_attention_forward)
elif model.config.model_type == "qwen2_moe":
# for Qwen1.5-MOE-A2.7B
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
from ipex_llm.transformers.models.qwen2_moe import qwen2moe_moeblock_forward
from ipex_llm.transformers.models.qwen2_moe import qwen2moe_attention_forward
from ipex_llm.transformers.models.qwen2_moe import qwen2moe_model_forward
convert_forward(model,
module.Qwen2MoeModel,
qwen2moe_model_forward)
convert_forward(model,
module.Qwen2MoeRMSNorm,
llama_rms_norm_forward)
convert_forward(model,
module.Qwen2MoeSparseMoeBlock,
qwen2moe_moeblock_forward)
convert_forward(model,
module.Qwen2MoeMLP,
llama_mlp_forward)
convert_forward(model,
module.Qwen2MoeAttention,
qwen2moe_attention_forward)
elif model.config.model_type == "aquila":
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)

View file

@ -0,0 +1,622 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/qwen2_moe/modeling_qwen2_moe.py
# coding=utf-8
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Qwen2MoE model."""
import math
import torch
import torch.nn.functional as F
import torch.nn as nn
import torch.utils.checkpoint
import warnings
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List
from ipex_llm.transformers.models.llama import repeat_kv
from ipex_llm.transformers.models.qwen2 import should_use_fuse_rope
from ipex_llm.transformers.models.utils import extend_kv_cache, append_kv_cache
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb_cache_freq_xpu
from ipex_llm.transformers.models.utils import is_enough_kv_cache_room_4_36
from transformers.models.qwen2.modeling_qwen2 import apply_rotary_pos_emb
from ipex_llm.utils.common import invalidInputError
from ipex_llm.transformers.models.utils import decoding_fast_path_qtype_check
from ipex_llm.transformers.models.utils import use_flash_attention, use_esimd_sdp
from transformers.models.qwen2_moe.modeling_qwen2_moe import Qwen2MoeModel, apply_rotary_pos_emb
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
from ipex_llm.transformers.kv import DynamicFp8Cache
import os
KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256))
def qwen2moe_model_forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
use_cache = use_cache if use_cache is not None else self.config.use_cache
if use_cache and use_quantize_kv_cache(self.layers[0].mlp.shared_expert.up_proj, input_ids):
if not isinstance(past_key_values, DynamicFp8Cache):
past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
return Qwen2MoeModel.forward(
self=self,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_router_logits=output_router_logits,
return_dict=return_dict,
)
def qwen2moe_attention_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if use_quantize_kv_cache(self.q_proj, hidden_states):
forward_function = qwen2moe_attention_forward_quantized
elif hidden_states.device.type == "cpu":
forward_function = qwen2moe_attention_forward_sdpa
else:
forward_function = qwen2moe_attention_forward_origin
return forward_function(
self=self,
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
**kwargs,
)
def qwen2moe_attention_forward_quantized(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37."
"Please make sure use `attention_mask` instead.`"
)
use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len,
self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len,
self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len,
self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
invalidInputError(self.layer_idx is not None,
"The cache structure has changed since version v4.36. "
f"If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, "
"please make sure to initialize the attention class "
"with a layer index.")
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
if use_fuse_rope:
query_states, key_states = apply_rotary_pos_emb_cache_freq_xpu(query_states, key_states,
sin, cos, "qwen2_moe",
position_ids)
else:
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
cos, sin, position_ids)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
key_states, value_states = past_key_value.update(key_states, value_states,
self.layer_idx, cache_kwargs)
if q_len == 1 and query_states.device.type == 'xpu' and not self.training \
and not hidden_states.requires_grad:
import linear_q4_0
attn_weights = linear_q4_0.query_key_fp8_matmul(query_states, key_states)
else:
key_states, value_states = restore_fp8_kv_cache(key_states,
value_states, query_states.dtype)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
attn_weights = attn_weights / math.sqrt(self.head_dim)
invalidInputError(attn_weights.size() == (bsz, self.num_heads, q_len, kv_seq_len),
("Attention weights should be of size "
f"{(bsz, self.num_heads, q_len, kv_seq_len)},"
"but is {attn_weights.size()}"))
if attention_mask is not None:
invalidInputError(attention_mask.size() == (bsz, 1, q_len, kv_seq_len),
(f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}"
f" but is {attention_mask.size()}"))
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1,
dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights,
p=self.attention_dropout, training=self.training)
if q_len == 1 and query_states.device.type == 'xpu' and not self.training \
and not hidden_states.requires_grad:
import linear_q4_0
attn_output = linear_q4_0.attn_value_fp8_matmul(attn_weights,
value_states.transpose(-1, -2))
else:
attn_output = torch.matmul(attn_weights, value_states)
invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim),
"`attn_output` should be of size "
f"{(bsz, self.num_heads, q_len, self.head_dim)},"
f" but is {attn_output.size()}")
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def qwen2moe_attention_forward_origin(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
"Please make sure use `attention_mask` instead.`"
)
bsz, q_len, _ = hidden_states.size()
device = hidden_states.device
enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx)
qtype_check = decoding_fast_path_qtype_check(self.q_proj)
decoding_fast_path = (qtype_check and use_fuse_rope
and enough_kv_room and bsz * q_len == 1)
decoding_fast_path = decoding_fast_path and not self.q_proj.enable_xetla
if decoding_fast_path:
hidden_states = hidden_states.view(1, -1)
cache_k = past_key_value.key_cache[self.layer_idx]
cache_v = past_key_value.value_cache[self.layer_idx]
kv_seq_len = cache_k.shape[-2]
import linear_q4_0
args = [hidden_states, self.q_proj.weight, self.k_proj.weight, self.v_proj.weight,
self.q_proj.bias, self.k_proj.bias, self.v_proj.bias, position_ids, cache_k,
cache_v, self.q_proj.weight.qtype, self.v_proj.weight.qtype, kv_seq_len,
self.head_dim, self.rotary_emb.base]
query_states, key_states, value_states = linear_q4_0.forward_qkv_bias(*args)
kv_seq_len += 1
if self.layer_idx == 0:
past_key_value._seen_tokens = kv_seq_len
past_key_value.key_cache[self.layer_idx] = key_states
past_key_value.value_cache[self.layer_idx] = value_states
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len,
self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len,
self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len,
self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
invalidInputError(
False,
"The cache structure has changed since version v4.36. "
f"If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, "
"please make sure to initialize the attention class with a layer index."
)
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
if use_fuse_rope:
query_states, key_states = apply_rotary_pos_emb_cache_freq_xpu(query_states, key_states,
sin, cos, "qwen2_moe",
position_ids)
else:
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
cos, sin, position_ids)
if past_key_value is not None:
if self.layer_idx == 0:
past_key_value._seen_tokens += key_states.shape[-2]
if len(past_key_value.key_cache) <= self.layer_idx:
past_key_value.key_cache.append(key_states)
past_key_value.value_cache.append(value_states)
else:
cache_k = past_key_value.key_cache[self.layer_idx]
cache_v = past_key_value.value_cache[self.layer_idx]
if not enough_kv_room:
# allocate new
new_c_k, new_c_v = extend_kv_cache(bsz,
self.num_key_value_heads, # Support GQA
self.head_dim,
cache_k.size(2),
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
dtype=cache_k.dtype,
device=device)
new_c_k[:] = cache_k
new_c_v[:] = cache_v
cache_k = new_c_k
cache_v = new_c_v
key_states, value_states = append_kv_cache(cache_k,
cache_v,
key_states,
value_states)
# update past_key_value
past_key_value.key_cache[self.layer_idx] = key_states
past_key_value.value_cache[self.layer_idx] = value_states
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
if not self.training and not hidden_states.requires_grad and \
use_flash_attention(query_states, key_states, attention_mask):
attn_output = F.scaled_dot_product_attention(query_states.to(device, dtype=torch.float16),
key_states.to(device, dtype=torch.float16),
value_states.to(device, dtype=torch.float16),
is_causal=True)
attn_weights = None
else:
attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
invalidInputError(attn_weights.size() == (bsz, self.num_heads, q_len, kv_seq_len),
("Attention weights should be of size "
f"{(bsz, self.num_heads, q_len, kv_seq_len)},"
"but is {attn_weights.size()}"))
if attention_mask is not None:
invalidInputError(attention_mask.size() == (bsz, 1, q_len, kv_seq_len),
(f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}"
f" but is {attention_mask.size()}"))
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights,
dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights,
p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim),
"`attn_output` should be of size "
f"{(bsz, self.num_heads, q_len, self.head_dim)},"
f" but is {attn_output.size()}")
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output.to(hidden_states.dtype), attn_weights, past_key_value
def qwen2moe_attention_forward_sdpa(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
"Please make sure use `attention_mask` instead.`"
)
bsz, q_len, _ = hidden_states.size()
device = hidden_states.device
enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx)
qtype_check = decoding_fast_path_qtype_check(self.q_proj)
decoding_fast_path = (qtype_check and use_fuse_rope
and enough_kv_room and bsz * q_len == 1)
decoding_fast_path = decoding_fast_path and not self.q_proj.enable_xetla
if decoding_fast_path:
hidden_states = hidden_states.view(1, -1)
cache_k = past_key_value.key_cache[self.layer_idx]
cache_v = past_key_value.value_cache[self.layer_idx]
kv_seq_len = cache_k.shape[-2]
import linear_q4_0
args = [hidden_states, self.q_proj.weight, self.k_proj.weight, self.v_proj.weight,
self.q_proj.bias, self.k_proj.bias, self.v_proj.bias, position_ids, cache_k,
cache_v, self.q_proj.weight.qtype, self.v_proj.weight.qtype, kv_seq_len,
self.head_dim, self.rotary_emb.base]
query_states, key_states, value_states = linear_q4_0.forward_qkv_bias(*args)
kv_seq_len += 1
if self.layer_idx == 0:
past_key_value._seen_tokens = kv_seq_len
past_key_value.key_cache[self.layer_idx] = key_states
past_key_value.value_cache[self.layer_idx] = value_states
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len,
self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len,
self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len,
self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
invalidInputError(
False,
"The cache structure has changed since version v4.36. "
f"If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, "
"please make sure to initialize the attention class with a layer index."
)
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
if use_fuse_rope:
query_states, key_states = apply_rotary_pos_emb_cache_freq_xpu(query_states, key_states,
sin, cos, "qwen2_moe",
position_ids)
else:
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
cos, sin, position_ids)
if past_key_value is not None:
if self.layer_idx == 0:
past_key_value._seen_tokens += key_states.shape[-2]
if len(past_key_value.key_cache) <= self.layer_idx:
past_key_value.key_cache.append(key_states)
past_key_value.value_cache.append(value_states)
else:
cache_k = past_key_value.key_cache[self.layer_idx]
cache_v = past_key_value.value_cache[self.layer_idx]
if not enough_kv_room:
# allocate new
new_c_k, new_c_v = extend_kv_cache(bsz,
self.num_key_value_heads, # Support GQA
self.head_dim,
cache_k.size(2),
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
dtype=cache_k.dtype,
device=device)
new_c_k[:] = cache_k
new_c_v[:] = cache_v
cache_k = new_c_k
cache_v = new_c_v
key_states, value_states = append_kv_cache(cache_k,
cache_v,
key_states,
value_states)
# update past_key_value
past_key_value.key_cache[self.layer_idx] = key_states
past_key_value.value_cache[self.layer_idx] = value_states
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
if output_attentions:
attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
invalidInputError(attn_weights.size() == (bsz, self.num_heads, q_len, kv_seq_len),
("Attention weights should be of size "
f"{(bsz, self.num_heads, q_len, kv_seq_len)},"
"but is {attn_weights.size()}"))
if attention_mask is not None:
invalidInputError(attention_mask.size() == (bsz, 1, q_len, kv_seq_len),
(f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}"
f" but is {attention_mask.size()}"))
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights,
dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights,
p=self.attention_dropout, training=self.training)
else:
attn_weights = None
from torch.nn.functional import scaled_dot_product_attention as sdpa
attn_output = sdpa(query_states,
key_states,
value_states,
attn_mask=attention_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
is_causal=self.is_causal and attention_mask is None and q_len > 1)
invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim),
"`attn_output` should be of size "
f"{(bsz, self.num_heads, q_len, self.head_dim)},"
f" but is {attn_output.size()}")
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights, past_key_value
def qwen2moe_moeblock_forward(self, hidden_states: torch.Tensor):
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_dim)
bs = hidden_states.shape[0]
# router_logits: (batch * sequence_length, n_experts)
router_logits = self.gate(hidden_states)
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
if self.norm_topk_prob:
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
# we cast back to the input dtype
routing_weights = routing_weights.to(hidden_states.dtype)
if bs == 1:
selected_experts = selected_experts[0].cpu().tolist()
for idx in range(self.top_k):
exp_id = selected_experts[idx]
expert_layer = self.experts[exp_id]
weight = routing_weights[:, idx]
if idx == 0:
final_hidden_states = expert_layer(hidden_states) * weight
else:
final_hidden_states = final_hidden_states + expert_layer(hidden_states) * weight
elif bs < 256:
final_hidden_states = torch.zeros((batch_size * sequence_length, hidden_dim),
dtype=hidden_states.dtype, device=hidden_states.device)
import linear_q4_0
indexes = linear_q4_0.get_moe_indexes(selected_experts.to(torch.int32).cpu(), 60)
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
idx_list = indexes[0][expert_idx]
top_x_list = indexes[1][expert_idx]
if len(idx_list) == 0:
continue
top_x = torch.tensor(top_x_list, dtype=torch.long, device=hidden_states.device)
current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)
current_hidden_states = expert_layer(current_state) * \
routing_weights[top_x_list, idx_list, None]
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
else:
final_hidden_states = torch.zeros(
(batch_size * sequence_length, hidden_dim),
dtype=hidden_states.dtype,
device=hidden_states.device
)
# One hot encode the selected experts to create an expert mask
# this will be used to easily index which expert is going to be sollicitated
expert_mask = torch.nn.functional.one_hot(selected_experts,
num_classes=self.num_experts).permute(2, 1, 0)
# Loop over all available experts in the model and perform the computation on each expert
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
idx, top_x = torch.where(expert_mask[expert_idx])
if top_x.shape[0] == 0:
continue
# Index the correct hidden states and compute the expert hidden state for
# the current expert. We need to make sure to multiply the output hidden
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
# However `index_add_` only support torch tensors for indexing so we'll use
# the `top_x` tensor here.
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
shared_expert_output = self.shared_expert(hidden_states)
shared_expert_output = F.sigmoid(self.shared_expert_gate(hidden_states)) * shared_expert_output
final_hidden_states = final_hidden_states + shared_expert_output
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
return final_hidden_states, router_logits

View file

@ -169,7 +169,7 @@ def rotate_every_two(x):
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, model_family):
if model_family in ["llama", "baichuan", "internlm", "aquila", "gpt_neox", "mistral",
"mixtral", "qwen2", "yuan", "stablelm"]:
"mixtral", "qwen2", "yuan", "stablelm", "qwen2_moe"]:
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
@ -226,7 +226,7 @@ def apply_rotary_pos_emb_cache_freq_xpu(q, k, sin, cos, model_family, position_i
k_embed = torch.empty(k.shape, dtype=k.dtype, device=k.device)
if model_family in ["qwen", "mixtral"]:
linear_q4_0.apply_rotary_embedding_half_q_and_k_cache_freq(q, k, sin, cos, q_embed, k_embed)
elif model_family in ["qwen2", "yuan", "stablelm"]:
elif model_family in ["qwen2", "yuan", "stablelm", "qwen2_moe"]:
cos = cos.to(q.dtype)
sin = sin.to(q.dtype)
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]