Add Ceval workflow and modify the result printing (#10140)

* Add c-eval workflow and modify running files

* Modify the chatglm evaluator file

* Modify the ceval workflow for triggering test

* Modify the ceval workflow file

* Modify the ceval workflow file

* Modify ceval workflow

* Adjust the ceval dataset download

* Add ceval workflow dependencies

* Modify ceval workflow dataset download

* Add ceval test dependencies

* Add ceval test dependencies

* Correct the result print
This commit is contained in:
Yuxuan Xia 2024-02-19 17:06:53 +08:00 committed by GitHub
parent 50fa004ba5
commit 209122559a
5 changed files with 339 additions and 21 deletions

200
.github/workflows/llm-ceval.yml vendored Normal file
View file

@ -0,0 +1,200 @@
name: LLM C-Eval
# Cancel previous runs in the PR when you push new commits
concurrency:
group: ${{ github.workflow }}-llm-nightly-test-${{ github.event.pull_request.number || github.run_id }}
cancel-in-progress: true
# Controls when the action will run.
on:
schedule:
- cron: "00 15 * * 5" # GMT time, 15:00 GMT == 23:00 Beijing Time
pull_request:
branches: [main]
paths:
- ".github/workflows/llm-ceval.yml"
# Allows you to run this workflow manually from the Actions tab
workflow_dispatch:
inputs:
model_name:
description: 'Model names, separated by comma and must be quoted.'
required: true
type: string
precision:
description: 'Precisions, separated by comma and must be quoted.'
required: true
type: string
runs-on:
description: 'Labels to filter the runners, separated by comma and must be quoted.'
default: "accuracy"
required: false
type: string
# A workflow run is made up of one or more jobs that can run sequentially
jobs:
llm-cpp-build:
uses: ./.github/workflows/llm-binary-build.yml
# Set the testing matrix based on the event (schedule, PR, or manual dispatch)
set-matrix:
runs-on: ubuntu-latest
outputs:
model_name: ${{ steps.set-matrix.outputs.model_name }}
precision: ${{ steps.set-matrix.outputs.precision }}
runner: ${{ steps.set-matrix.outputs.runner }}
steps:
- name: set-nightly-env
if: ${{github.event_name == 'schedule'}}
env:
NIGHTLY_MATRIX_MODEL_NAME: '["chatglm2-6b","chinese-llama2-7b", "Qwen-7B-Chat"]'
NIGHTLY_MATRIX_PRECISION: '["sym_int4", "fp8_e5m2"]'
NIGHTLY_LABELS: '["self-hosted", "llm", "accuracy-nightly"]'
run: |
echo "model_name=$NIGHTLY_MATRIX_MODEL_NAME" >> $GITHUB_ENV
echo "precision=$NIGHTLY_MATRIX_PRECISION" >> $GITHUB_ENV
echo "runner=$NIGHTLY_LABELS" >> $GITHUB_ENV
- name: set-pr-env
if: ${{github.event_name == 'pull_request'}}
env:
PR_MATRIX_MODEL_NAME: '["Qwen-7B-Chat"]'
PR_MATRIX_PRECISION: '["sym_int4", "fp8_e5m2"]'
PR_LABELS: '["self-hosted", "llm", "temp-arc01"]'
run: |
echo "model_name=$PR_MATRIX_MODEL_NAME" >> $GITHUB_ENV
echo "precision=$PR_MATRIX_PRECISION" >> $GITHUB_ENV
echo "runner=$PR_LABELS" >> $GITHUB_ENV
- name: set-manual-env
if: ${{github.event_name == 'workflow_dispatch'}}
env:
MANUAL_MATRIX_MODEL_NAME: ${{format('[ {0} ]', inputs.model_name)}}
MANUAL_MATRIX_PRECISION: ${{format('[ {0} ]', inputs.precision)}}
MANUAL_LABELS: ${{format('["self-hosted", "llm", {0}]', inputs.runs-on)}}
run: |
echo "model_name=$MANUAL_MATRIX_MODEL_NAME" >> $GITHUB_ENV
echo "precision=$MANUAL_MATRIX_PRECISION" >> $GITHUB_ENV
echo "runner=$MANUAL_LABELS" >> $GITHUB_ENV
- name: set-matrix
id: set-matrix
run: |
echo "model_name=$model_name" >> $GITHUB_OUTPUT
echo "precision=$precision" >> $GITHUB_OUTPUT
echo "runner=$runner" >> $GITHUB_OUTPUT
llm-ceval-evalution:
timeout-minutes: 1200
needs: [llm-cpp-build, set-matrix]
strategy:
fail-fast: false
matrix:
# include:
# python-version: "3.9"
# model_name: "stablelm-3b-4e1t"
# task: "arc"
# precision: "sym_int4" #options: sym_int4, fp4, mixed_fp4, sym_int8, fp8, mixed_fp8
python-version: ["3.9"]
model_name: ${{ fromJson(needs.set-matrix.outputs.model_name) }}
precision: ${{ fromJson(needs.set-matrix.outputs.precision) }}
device: [xpu]
runs-on: ${{ fromJson(needs.set-matrix.outputs.runner) }}
env:
ANALYTICS_ZOO_ROOT: ${{ github.workspace }}
ORIGIN_DIR: /mnt/disk1/models
CEVAL_HF_HOME: /mnt/disk1/ceval_home
steps:
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
shell: bash
run: |
python -m pip install --upgrade pip
python -m pip install --upgrade setuptools==58.0.4
python -m pip install --upgrade wheel
- name: Download llm binary
uses: ./.github/actions/llm/download-llm-binary
- name: Run LLM install (all) test
uses: ./.github/actions/llm/setup-llm-env
with:
extra-dependency: "xpu_2.1"
- name: Download models and datasets
shell: bash
run: |
echo "MODEL_PATH=${ORIGIN_DIR}/${{ matrix.model_name }}/" >> "$GITHUB_ENV"
MODEL_PATH=${ORIGIN_DIR}/${{ matrix.model_name }}/
if [ ! -d $CEVAL_HF_HOME ]; then
mkdir -p $CEVAL_HF_HOME
fi
if [ ! -d "$CEVAL_HF_HOME/data" ]; then
mkdir -p "$CEVAL_HF_HOME/data"
fi
if [ -d "$CEVAL_HF_HOME/data/dev" ]; then
rm -rf "$CEVAL_HF_HOME/data/dev"
fi
if [ -d "$CEVAL_HF_HOME/data/test" ]; then
rm -rf "$CEVAL_HF_HOME/data/test"
fi
if [ -d "$CEVAL_HF_HOME/data/val" ]; then
rm -rf "$CEVAL_HF_HOME/data/val"
fi
wget -r -nH -nc --no-verbose --cut-dirs=1 ${LLM_FTP_URL}/llm/ceval-exam.zip -P "$CEVAL_HF_HOME/data"
echo "DATA_PATH=$CEVAL_HF_HOME/data" >> "$GITHUB_ENV"
DATA_PATH=$CEVAL_HF_HOME/data
unzip -o "$CEVAL_HF_HOME/data/ceval-exam.zip" -d "$CEVAL_HF_HOME/data"
wget -r -nH -nc --no-verbose --cut-dirs=1 ${LLM_FTP_URL}/llm/${{ matrix.model_name }} -P ${ORIGIN_DIR}
- name: Install Dependencies
shell: bash
run: |
pip install transformers==4.31.0
pip install thefuzz
pip install tiktoken
pip install transformers_stream_generator
- name: Run C-Eval
shell: bash
working-directory: ${{ github.workspace }}/python/llm/dev/benchmark/ceval
env:
USE_XETLA: OFF
SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS: 1
run: |
source /opt/intel/oneapi/setvars.sh
python eval.py \
--model_path ${MODEL_PATH} \
--eval_type validation \
--device xpu \
--eval_data_path ${DATA_PATH} \
--qtype ${{ matrix.precision }}
- uses: actions/upload-artifact@v3
with:
name: ceval_results
path:
${{ github.workspace }}/python/llm/dev/benchmark/ceval/results/**
llm-ceval-summary:
if: ${{ always() }}
needs: llm-ceval-evalution
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python 3.9
uses: actions/setup-python@v4
with:
python-version: 3.9
- name: Download all results
uses: actions/download-artifact@v3
with:
name: ceval_results
path: results
- name: Summarize the results
shell: bash
run: |
ls results
python ${{ github.workspace }}/python/llm/dev/benchmark/ceval/organize_results.py results/

View file

@ -19,7 +19,6 @@ bash run.sh
+ `run.sh` + `run.sh`
```shell ```shell
python eval.py \ python eval.py \
--model_family llama \
--model_path "path to model" \ --model_path "path to model" \
--eval_type validation \ --eval_type validation \
--device xpu \ --device xpu \

View file

@ -222,7 +222,7 @@ hard_list = [
choices = ["A", "B", "C", "D"] choices = ["A", "B", "C", "D"]
def cal_ceval(res): def cal_ceval(res, model_path, qtype):
acc_sum_dict = dict() acc_sum_dict = dict()
acc_norm_sum_dict = dict() acc_norm_sum_dict = dict()
cnt_dict = dict() cnt_dict = dict()
@ -244,13 +244,22 @@ def cal_ceval(res):
hard_acc_sum += float(res[tt]) hard_acc_sum += float(res[tt])
acc_sum_dict[class_] += float(res[tt]) acc_sum_dict[class_] += float(res[tt])
cnt_dict[class_] += 1 cnt_dict[class_] += 1
print("\n\n\n")
for k in ["STEM", "Social Science", "Humanities", "Other"]: result_lst = []
if k in cnt_dict: subject_names = ["STEM", "Social Science", "Humanities", "Other", "Hard", "Average"]
print("%s acc: %.2f " % (k, acc_sum_dict[k] / cnt_dict[k])) for value in subject_names:
if hard_cnt > 0: if value == "Hard":
print("Hard acc:%.2f " % (hard_acc_sum / hard_cnt)) result_lst.append(f"{hard_acc_sum / hard_cnt:.2f}")
print("AVERAGE acc:%.2f " % (acc_sum / cnt)) elif value == "Average":
result_lst.append(f"{acc_sum / cnt:.2f}")
else:
result_lst.append(f"{acc_sum_dict[value] / cnt_dict[value]:.2f}")
if not os.path.exists('results/'):
os.mkdir('results/')
dump_dict = {"Model Name": model_path.split('/')[-2], "Precision": qtype, "Results": result_lst}
json.dump(dump_dict, open(f'results/{dump_dict["Model Name"]}_{dump_dict["Precision"]}.json','w'), ensure_ascii=False, indent=4)
def main(args, evaluator): def main(args, evaluator):
@ -262,8 +271,9 @@ def main(args, evaluator):
) )
val_df = pd.read_csv(val_file_path) val_df = pd.read_csv(val_file_path)
score, _ = evaluator.eval_subject(subject_name, val_df, args.eval_type) score, _ = evaluator.eval_subject(subject_name, val_df, args.eval_type)
torch.xpu.empty_cache()
result[subject_name] = score result[subject_name] = score
cal_ceval(result) cal_ceval(result, args.model_path, args.qtype)
elif args.eval_type == "test": elif args.eval_type == "test":
all_answers = {} all_answers = {}
for subject_name in tqdm(TASK_NAME_MAPPING.keys()): for subject_name in tqdm(TASK_NAME_MAPPING.keys()):
@ -272,6 +282,7 @@ def main(args, evaluator):
) )
test_df = pd.read_csv(test_file_path) test_df = pd.read_csv(test_file_path)
_, answers = evaluator.eval_subject(subject_name, test_df, args.eval_type) _, answers = evaluator.eval_subject(subject_name, test_df, args.eval_type)
torch.xpu.empty_cache()
all_answers[subject_name] = answers all_answers[subject_name] = answers
json.dump(all_answers, open('submission.json','w'), ensure_ascii=False, indent=4) json.dump(all_answers, open('submission.json','w'), ensure_ascii=False, indent=4)
else: else:
@ -297,7 +308,7 @@ if __name__ == "__main__":
if family in args.model_path.lower(): if family in args.model_path.lower():
model_family = family model_family = family
assert model_family is not None, f"Model {args.model_path}'s model family is not implemented" assert model_family is not None, f"Model {args.model_path}'s evaluator is not implemented"
if model_family == "llama": if model_family == "llama":
evaluator = LlamaEvaluator( evaluator = LlamaEvaluator(

View file

@ -60,7 +60,7 @@ class ChatGLMEvaluator(Evaluator):
message.append(self.format_example(dev_df.iloc[i, :], cot=cot)) message.append(self.format_example(dev_df.iloc[i, :], cot=cot))
return message return message
def format_example(self, line, include_answer=True, cot=False, add_prompt=''): def format_example(self, line, include_answer=False, cot=False, add_prompt=''):
example = add_prompt + line['question'] example = add_prompt + line['question']
# print(example) # print(example)
for choice in self.choices: for choice in self.choices:
@ -110,6 +110,51 @@ class ChatGLMEvaluator(Evaluator):
return answer, False return answer, False
return '-', False return '-', False
def extract_choice(self, gen, prompt, choice_list):
res = re.search(
r"(?:(?:选|选择|选定)[:]?\s*|(?:(?:答案|选项)(?![^ABCD]{0,10}?(?:不|非)[^ABCD]{0,10}?(?:是|选|为||:|】))[^ABCD]{0,10}?(?:是|选|为||:|】))[^ABCD]{0,10}?)(A|B|C|D)(?:选项)?(?:\)|。|\.||,||、|A|B|C|D|$||:|\)|)",
gen,
)
if res is None:
res = re.search(
r"(A|B|C|D)(?:选?项)?(?![^ABCD]{0,4}?(?:不|非)[^ABCD]{0,4}?(?:正确|对[的,。:]|符合))[^ABCD]{0,4}?(?:正确|对[的,。:]|符合)",
gen,
)
if res is None:
res = re.search(r"^[\(]?(A|B|C|D)(?:。|\)||\.||,|||:|$)", gen)
if res is None:
res = re.search(r"(?<![a-zA-Z])(A|B|C|D)(?![a-zA-Z=])", gen)
if res is None:
return self.choices[choice_list.index(process.extractOne(gen, choice_list)[0])]
return res.group(1)
def process_before_extraction(self, gen, question, choice_dict):
question_split = question.rstrip("").split("")[-1].split("_")
if len(question_split[0].strip()) > 4:
gen = gen.replace(question_split[0], "答案是")
if len(question_split[-1].strip()) > 4:
gen = gen.replace(question_split[-1], "")
for key, val in sorted(choice_dict.items(), key=lambda x: len(x[1]), reverse=True):
gen = gen.replace(val.rstrip(""), key)
return gen
def extract_answer(self, response, row):
prompt = row["question"]
gen = self.process_before_extraction(
response, prompt, {choice: row[choice] for choice in self.choices}
)
if not isinstance(prompt, str):
prompt = prompt[0]
pred = self.extract_choice(gen, prompt, [row[choice] for choice in self.choices])
return pred
def build_prompt(self, text): def build_prompt(self, text):
return "[Round {}]\n\n问:{}\n\n答:".format(1, text) return "[Round {}]\n\n问:{}\n\n答:".format(1, text)
@ -168,7 +213,7 @@ class ChatGLMEvaluator(Evaluator):
eval_type="validation", # "test","validation", eval_type="validation", # "test","validation",
dev_df=None, dev_df=None,
few_shot=False, few_shot=False,
cot=False, cot=True,
): ):
if eval_type == "validation": if eval_type == "validation":
correct_num = 0 correct_num = 0
@ -200,12 +245,7 @@ class ChatGLMEvaluator(Evaluator):
elif eval_type == "test": elif eval_type == "test":
answers = {} answers = {}
for i, row in tqdm(test_df.iterrows(), total=len(test_df)): for i, row in tqdm(test_df.iterrows(), total=len(test_df)):
question = self.format_example(row) question = self.format_example(row, include_answer=False, cot=cot)
response, _ = self.model.chat( answers[str(i)] = self.generate_dist(self.model, self.tokenizer, question, do_sample=False, max_length=2048, history=[])
self.tokenizer,
question,
history=None,
)
pred = self.extract_answer(response, row)
answers[str(i)] = pred
return None, answers return None, answers

View file

@ -0,0 +1,68 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import sys
import json
if __name__ == '__main__':
result_path = sys.argv[1]
column_size = [25, 15, 10, 18, 15, 10, 10, 10]
pad_string = lambda x, l: [i.ljust(j) for i, j in zip(x, l)]
column_names = ["Model Name", "Precision", "STEM", "Social Science", "Humanities", "Other", "Hard", "Average"]
print(f'\nDumping results for C-Eval score:\n')
print(' '.join(pad_string(column_names, column_size)))
print()
file_lst = os.listdir(result_path)
file_lst = [f'{result_path}/{i}' for i in file_lst]
organized_dict = {} # {'Qwen-7B': {'sym_int4': [], 'mixed_fp4': }}
for file in file_lst:
# Read the JSON file
with open(file, 'r') as file:
data = json.load(file)
result_lst = [data['Model Name'], data['Precision']]
result_lst += data['Results']
# store in the organized dictionary
try:
organized_dict[data['Model Name']][data['Precision']] = result_lst
except:
organized_dict[data['Model Name']] = {}
organized_dict[data['Model Name']][data['Precision']] = result_lst
# define the print precision order
precision_order = ['sym_int4', 'mixed_fp4', 'fp4', 'sym_int8', 'fp8_e4m3', 'fp8_e5m2', 'mixed_fp8']
# print the results
for model_name in organized_dict.keys():
for precision in precision_order:
try:
print(' '.join(pad_string(organized_dict[model_name][precision], column_size)))
except KeyError:
continue
# separate between models
print()