Add Ceval workflow and modify the result printing (#10140)
* Add c-eval workflow and modify running files * Modify the chatglm evaluator file * Modify the ceval workflow for triggering test * Modify the ceval workflow file * Modify the ceval workflow file * Modify ceval workflow * Adjust the ceval dataset download * Add ceval workflow dependencies * Modify ceval workflow dataset download * Add ceval test dependencies * Add ceval test dependencies * Correct the result print
This commit is contained in:
parent
50fa004ba5
commit
209122559a
5 changed files with 339 additions and 21 deletions
200
.github/workflows/llm-ceval.yml
vendored
Normal file
200
.github/workflows/llm-ceval.yml
vendored
Normal file
|
|
@ -0,0 +1,200 @@
|
||||||
|
name: LLM C-Eval
|
||||||
|
|
||||||
|
# Cancel previous runs in the PR when you push new commits
|
||||||
|
concurrency:
|
||||||
|
group: ${{ github.workflow }}-llm-nightly-test-${{ github.event.pull_request.number || github.run_id }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
|
# Controls when the action will run.
|
||||||
|
on:
|
||||||
|
schedule:
|
||||||
|
- cron: "00 15 * * 5" # GMT time, 15:00 GMT == 23:00 Beijing Time
|
||||||
|
pull_request:
|
||||||
|
branches: [main]
|
||||||
|
paths:
|
||||||
|
- ".github/workflows/llm-ceval.yml"
|
||||||
|
# Allows you to run this workflow manually from the Actions tab
|
||||||
|
workflow_dispatch:
|
||||||
|
inputs:
|
||||||
|
model_name:
|
||||||
|
description: 'Model names, separated by comma and must be quoted.'
|
||||||
|
required: true
|
||||||
|
type: string
|
||||||
|
precision:
|
||||||
|
description: 'Precisions, separated by comma and must be quoted.'
|
||||||
|
required: true
|
||||||
|
type: string
|
||||||
|
runs-on:
|
||||||
|
description: 'Labels to filter the runners, separated by comma and must be quoted.'
|
||||||
|
default: "accuracy"
|
||||||
|
required: false
|
||||||
|
type: string
|
||||||
|
|
||||||
|
# A workflow run is made up of one or more jobs that can run sequentially
|
||||||
|
jobs:
|
||||||
|
llm-cpp-build:
|
||||||
|
uses: ./.github/workflows/llm-binary-build.yml
|
||||||
|
# Set the testing matrix based on the event (schedule, PR, or manual dispatch)
|
||||||
|
set-matrix:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
outputs:
|
||||||
|
model_name: ${{ steps.set-matrix.outputs.model_name }}
|
||||||
|
precision: ${{ steps.set-matrix.outputs.precision }}
|
||||||
|
runner: ${{ steps.set-matrix.outputs.runner }}
|
||||||
|
steps:
|
||||||
|
- name: set-nightly-env
|
||||||
|
if: ${{github.event_name == 'schedule'}}
|
||||||
|
env:
|
||||||
|
NIGHTLY_MATRIX_MODEL_NAME: '["chatglm2-6b","chinese-llama2-7b", "Qwen-7B-Chat"]'
|
||||||
|
NIGHTLY_MATRIX_PRECISION: '["sym_int4", "fp8_e5m2"]'
|
||||||
|
NIGHTLY_LABELS: '["self-hosted", "llm", "accuracy-nightly"]'
|
||||||
|
run: |
|
||||||
|
echo "model_name=$NIGHTLY_MATRIX_MODEL_NAME" >> $GITHUB_ENV
|
||||||
|
echo "precision=$NIGHTLY_MATRIX_PRECISION" >> $GITHUB_ENV
|
||||||
|
echo "runner=$NIGHTLY_LABELS" >> $GITHUB_ENV
|
||||||
|
|
||||||
|
- name: set-pr-env
|
||||||
|
if: ${{github.event_name == 'pull_request'}}
|
||||||
|
env:
|
||||||
|
PR_MATRIX_MODEL_NAME: '["Qwen-7B-Chat"]'
|
||||||
|
PR_MATRIX_PRECISION: '["sym_int4", "fp8_e5m2"]'
|
||||||
|
PR_LABELS: '["self-hosted", "llm", "temp-arc01"]'
|
||||||
|
run: |
|
||||||
|
echo "model_name=$PR_MATRIX_MODEL_NAME" >> $GITHUB_ENV
|
||||||
|
echo "precision=$PR_MATRIX_PRECISION" >> $GITHUB_ENV
|
||||||
|
echo "runner=$PR_LABELS" >> $GITHUB_ENV
|
||||||
|
- name: set-manual-env
|
||||||
|
if: ${{github.event_name == 'workflow_dispatch'}}
|
||||||
|
env:
|
||||||
|
MANUAL_MATRIX_MODEL_NAME: ${{format('[ {0} ]', inputs.model_name)}}
|
||||||
|
MANUAL_MATRIX_PRECISION: ${{format('[ {0} ]', inputs.precision)}}
|
||||||
|
MANUAL_LABELS: ${{format('["self-hosted", "llm", {0}]', inputs.runs-on)}}
|
||||||
|
run: |
|
||||||
|
echo "model_name=$MANUAL_MATRIX_MODEL_NAME" >> $GITHUB_ENV
|
||||||
|
echo "precision=$MANUAL_MATRIX_PRECISION" >> $GITHUB_ENV
|
||||||
|
echo "runner=$MANUAL_LABELS" >> $GITHUB_ENV
|
||||||
|
- name: set-matrix
|
||||||
|
id: set-matrix
|
||||||
|
run: |
|
||||||
|
echo "model_name=$model_name" >> $GITHUB_OUTPUT
|
||||||
|
echo "precision=$precision" >> $GITHUB_OUTPUT
|
||||||
|
echo "runner=$runner" >> $GITHUB_OUTPUT
|
||||||
|
llm-ceval-evalution:
|
||||||
|
timeout-minutes: 1200
|
||||||
|
needs: [llm-cpp-build, set-matrix]
|
||||||
|
strategy:
|
||||||
|
fail-fast: false
|
||||||
|
matrix:
|
||||||
|
# include:
|
||||||
|
# python-version: "3.9"
|
||||||
|
# model_name: "stablelm-3b-4e1t"
|
||||||
|
# task: "arc"
|
||||||
|
# precision: "sym_int4" #options: sym_int4, fp4, mixed_fp4, sym_int8, fp8, mixed_fp8
|
||||||
|
python-version: ["3.9"]
|
||||||
|
model_name: ${{ fromJson(needs.set-matrix.outputs.model_name) }}
|
||||||
|
precision: ${{ fromJson(needs.set-matrix.outputs.precision) }}
|
||||||
|
device: [xpu]
|
||||||
|
|
||||||
|
runs-on: ${{ fromJson(needs.set-matrix.outputs.runner) }}
|
||||||
|
env:
|
||||||
|
ANALYTICS_ZOO_ROOT: ${{ github.workspace }}
|
||||||
|
ORIGIN_DIR: /mnt/disk1/models
|
||||||
|
CEVAL_HF_HOME: /mnt/disk1/ceval_home
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v3
|
||||||
|
- name: Set up Python ${{ matrix.python-version }}
|
||||||
|
uses: actions/setup-python@v4
|
||||||
|
with:
|
||||||
|
python-version: ${{ matrix.python-version }}
|
||||||
|
- name: Install dependencies
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
python -m pip install --upgrade pip
|
||||||
|
python -m pip install --upgrade setuptools==58.0.4
|
||||||
|
python -m pip install --upgrade wheel
|
||||||
|
|
||||||
|
- name: Download llm binary
|
||||||
|
uses: ./.github/actions/llm/download-llm-binary
|
||||||
|
|
||||||
|
- name: Run LLM install (all) test
|
||||||
|
uses: ./.github/actions/llm/setup-llm-env
|
||||||
|
with:
|
||||||
|
extra-dependency: "xpu_2.1"
|
||||||
|
|
||||||
|
- name: Download models and datasets
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
echo "MODEL_PATH=${ORIGIN_DIR}/${{ matrix.model_name }}/" >> "$GITHUB_ENV"
|
||||||
|
MODEL_PATH=${ORIGIN_DIR}/${{ matrix.model_name }}/
|
||||||
|
if [ ! -d $CEVAL_HF_HOME ]; then
|
||||||
|
mkdir -p $CEVAL_HF_HOME
|
||||||
|
fi
|
||||||
|
if [ ! -d "$CEVAL_HF_HOME/data" ]; then
|
||||||
|
mkdir -p "$CEVAL_HF_HOME/data"
|
||||||
|
fi
|
||||||
|
if [ -d "$CEVAL_HF_HOME/data/dev" ]; then
|
||||||
|
rm -rf "$CEVAL_HF_HOME/data/dev"
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ -d "$CEVAL_HF_HOME/data/test" ]; then
|
||||||
|
rm -rf "$CEVAL_HF_HOME/data/test"
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ -d "$CEVAL_HF_HOME/data/val" ]; then
|
||||||
|
rm -rf "$CEVAL_HF_HOME/data/val"
|
||||||
|
fi
|
||||||
|
wget -r -nH -nc --no-verbose --cut-dirs=1 ${LLM_FTP_URL}/llm/ceval-exam.zip -P "$CEVAL_HF_HOME/data"
|
||||||
|
echo "DATA_PATH=$CEVAL_HF_HOME/data" >> "$GITHUB_ENV"
|
||||||
|
DATA_PATH=$CEVAL_HF_HOME/data
|
||||||
|
unzip -o "$CEVAL_HF_HOME/data/ceval-exam.zip" -d "$CEVAL_HF_HOME/data"
|
||||||
|
wget -r -nH -nc --no-verbose --cut-dirs=1 ${LLM_FTP_URL}/llm/${{ matrix.model_name }} -P ${ORIGIN_DIR}
|
||||||
|
|
||||||
|
- name: Install Dependencies
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
pip install transformers==4.31.0
|
||||||
|
pip install thefuzz
|
||||||
|
pip install tiktoken
|
||||||
|
pip install transformers_stream_generator
|
||||||
|
|
||||||
|
- name: Run C-Eval
|
||||||
|
shell: bash
|
||||||
|
working-directory: ${{ github.workspace }}/python/llm/dev/benchmark/ceval
|
||||||
|
env:
|
||||||
|
USE_XETLA: OFF
|
||||||
|
SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS: 1
|
||||||
|
run: |
|
||||||
|
source /opt/intel/oneapi/setvars.sh
|
||||||
|
python eval.py \
|
||||||
|
--model_path ${MODEL_PATH} \
|
||||||
|
--eval_type validation \
|
||||||
|
--device xpu \
|
||||||
|
--eval_data_path ${DATA_PATH} \
|
||||||
|
--qtype ${{ matrix.precision }}
|
||||||
|
|
||||||
|
- uses: actions/upload-artifact@v3
|
||||||
|
with:
|
||||||
|
name: ceval_results
|
||||||
|
path:
|
||||||
|
${{ github.workspace }}/python/llm/dev/benchmark/ceval/results/**
|
||||||
|
|
||||||
|
llm-ceval-summary:
|
||||||
|
if: ${{ always() }}
|
||||||
|
needs: llm-ceval-evalution
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v3
|
||||||
|
- name: Set up Python 3.9
|
||||||
|
uses: actions/setup-python@v4
|
||||||
|
with:
|
||||||
|
python-version: 3.9
|
||||||
|
- name: Download all results
|
||||||
|
uses: actions/download-artifact@v3
|
||||||
|
with:
|
||||||
|
name: ceval_results
|
||||||
|
path: results
|
||||||
|
- name: Summarize the results
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
ls results
|
||||||
|
python ${{ github.workspace }}/python/llm/dev/benchmark/ceval/organize_results.py results/
|
||||||
|
|
@ -19,7 +19,6 @@ bash run.sh
|
||||||
+ `run.sh`
|
+ `run.sh`
|
||||||
```shell
|
```shell
|
||||||
python eval.py \
|
python eval.py \
|
||||||
--model_family llama \
|
|
||||||
--model_path "path to model" \
|
--model_path "path to model" \
|
||||||
--eval_type validation \
|
--eval_type validation \
|
||||||
--device xpu \
|
--device xpu \
|
||||||
|
|
|
||||||
|
|
@ -222,7 +222,7 @@ hard_list = [
|
||||||
choices = ["A", "B", "C", "D"]
|
choices = ["A", "B", "C", "D"]
|
||||||
|
|
||||||
|
|
||||||
def cal_ceval(res):
|
def cal_ceval(res, model_path, qtype):
|
||||||
acc_sum_dict = dict()
|
acc_sum_dict = dict()
|
||||||
acc_norm_sum_dict = dict()
|
acc_norm_sum_dict = dict()
|
||||||
cnt_dict = dict()
|
cnt_dict = dict()
|
||||||
|
|
@ -244,13 +244,22 @@ def cal_ceval(res):
|
||||||
hard_acc_sum += float(res[tt])
|
hard_acc_sum += float(res[tt])
|
||||||
acc_sum_dict[class_] += float(res[tt])
|
acc_sum_dict[class_] += float(res[tt])
|
||||||
cnt_dict[class_] += 1
|
cnt_dict[class_] += 1
|
||||||
print("\n\n\n")
|
|
||||||
for k in ["STEM", "Social Science", "Humanities", "Other"]:
|
result_lst = []
|
||||||
if k in cnt_dict:
|
subject_names = ["STEM", "Social Science", "Humanities", "Other", "Hard", "Average"]
|
||||||
print("%s acc: %.2f " % (k, acc_sum_dict[k] / cnt_dict[k]))
|
for value in subject_names:
|
||||||
if hard_cnt > 0:
|
if value == "Hard":
|
||||||
print("Hard acc:%.2f " % (hard_acc_sum / hard_cnt))
|
result_lst.append(f"{hard_acc_sum / hard_cnt:.2f}")
|
||||||
print("AVERAGE acc:%.2f " % (acc_sum / cnt))
|
elif value == "Average":
|
||||||
|
result_lst.append(f"{acc_sum / cnt:.2f}")
|
||||||
|
else:
|
||||||
|
result_lst.append(f"{acc_sum_dict[value] / cnt_dict[value]:.2f}")
|
||||||
|
|
||||||
|
if not os.path.exists('results/'):
|
||||||
|
os.mkdir('results/')
|
||||||
|
|
||||||
|
dump_dict = {"Model Name": model_path.split('/')[-2], "Precision": qtype, "Results": result_lst}
|
||||||
|
json.dump(dump_dict, open(f'results/{dump_dict["Model Name"]}_{dump_dict["Precision"]}.json','w'), ensure_ascii=False, indent=4)
|
||||||
|
|
||||||
|
|
||||||
def main(args, evaluator):
|
def main(args, evaluator):
|
||||||
|
|
@ -262,8 +271,9 @@ def main(args, evaluator):
|
||||||
)
|
)
|
||||||
val_df = pd.read_csv(val_file_path)
|
val_df = pd.read_csv(val_file_path)
|
||||||
score, _ = evaluator.eval_subject(subject_name, val_df, args.eval_type)
|
score, _ = evaluator.eval_subject(subject_name, val_df, args.eval_type)
|
||||||
|
torch.xpu.empty_cache()
|
||||||
result[subject_name] = score
|
result[subject_name] = score
|
||||||
cal_ceval(result)
|
cal_ceval(result, args.model_path, args.qtype)
|
||||||
elif args.eval_type == "test":
|
elif args.eval_type == "test":
|
||||||
all_answers = {}
|
all_answers = {}
|
||||||
for subject_name in tqdm(TASK_NAME_MAPPING.keys()):
|
for subject_name in tqdm(TASK_NAME_MAPPING.keys()):
|
||||||
|
|
@ -272,6 +282,7 @@ def main(args, evaluator):
|
||||||
)
|
)
|
||||||
test_df = pd.read_csv(test_file_path)
|
test_df = pd.read_csv(test_file_path)
|
||||||
_, answers = evaluator.eval_subject(subject_name, test_df, args.eval_type)
|
_, answers = evaluator.eval_subject(subject_name, test_df, args.eval_type)
|
||||||
|
torch.xpu.empty_cache()
|
||||||
all_answers[subject_name] = answers
|
all_answers[subject_name] = answers
|
||||||
json.dump(all_answers, open('submission.json','w'), ensure_ascii=False, indent=4)
|
json.dump(all_answers, open('submission.json','w'), ensure_ascii=False, indent=4)
|
||||||
else:
|
else:
|
||||||
|
|
@ -297,7 +308,7 @@ if __name__ == "__main__":
|
||||||
if family in args.model_path.lower():
|
if family in args.model_path.lower():
|
||||||
model_family = family
|
model_family = family
|
||||||
|
|
||||||
assert model_family is not None, f"Model {args.model_path}'s model family is not implemented"
|
assert model_family is not None, f"Model {args.model_path}'s evaluator is not implemented"
|
||||||
|
|
||||||
if model_family == "llama":
|
if model_family == "llama":
|
||||||
evaluator = LlamaEvaluator(
|
evaluator = LlamaEvaluator(
|
||||||
|
|
|
||||||
|
|
@ -60,7 +60,7 @@ class ChatGLMEvaluator(Evaluator):
|
||||||
message.append(self.format_example(dev_df.iloc[i, :], cot=cot))
|
message.append(self.format_example(dev_df.iloc[i, :], cot=cot))
|
||||||
return message
|
return message
|
||||||
|
|
||||||
def format_example(self, line, include_answer=True, cot=False, add_prompt=''):
|
def format_example(self, line, include_answer=False, cot=False, add_prompt=''):
|
||||||
example = add_prompt + line['question']
|
example = add_prompt + line['question']
|
||||||
# print(example)
|
# print(example)
|
||||||
for choice in self.choices:
|
for choice in self.choices:
|
||||||
|
|
@ -110,6 +110,51 @@ class ChatGLMEvaluator(Evaluator):
|
||||||
return answer, False
|
return answer, False
|
||||||
return '-', False
|
return '-', False
|
||||||
|
|
||||||
|
def extract_choice(self, gen, prompt, choice_list):
|
||||||
|
res = re.search(
|
||||||
|
r"(?:(?:选|选择|选定)[::]?\s*|(?:(?:答案|选项)(?![^ABCD]{0,10}?(?:不|非)[^ABCD]{0,10}?(?:是|选|为|:|:|】))[^ABCD]{0,10}?(?:是|选|为|:|:|】))[^ABCD]{0,10}?)(A|B|C|D)(?:选项)?(?:\)|。|\.|,|,|.|、|A|B|C|D|$|:|:|\)|))",
|
||||||
|
gen,
|
||||||
|
)
|
||||||
|
|
||||||
|
if res is None:
|
||||||
|
res = re.search(
|
||||||
|
r"(A|B|C|D)(?:选?项)?(?![^ABCD]{0,4}?(?:不|非)[^ABCD]{0,4}?(?:正确|对[的,。:]|符合))[^ABCD]{0,4}?(?:正确|对[的,。:]|符合)",
|
||||||
|
gen,
|
||||||
|
)
|
||||||
|
|
||||||
|
if res is None:
|
||||||
|
res = re.search(r"^[\((]?(A|B|C|D)(?:。|\)|)|\.|,|,|.|:|:|$)", gen)
|
||||||
|
|
||||||
|
if res is None:
|
||||||
|
res = re.search(r"(?<![a-zA-Z])(A|B|C|D)(?![a-zA-Z=])", gen)
|
||||||
|
|
||||||
|
if res is None:
|
||||||
|
return self.choices[choice_list.index(process.extractOne(gen, choice_list)[0])]
|
||||||
|
return res.group(1)
|
||||||
|
|
||||||
|
def process_before_extraction(self, gen, question, choice_dict):
|
||||||
|
|
||||||
|
question_split = question.rstrip("。").split("。")[-1].split("_")
|
||||||
|
|
||||||
|
if len(question_split[0].strip()) > 4:
|
||||||
|
gen = gen.replace(question_split[0], "答案是")
|
||||||
|
if len(question_split[-1].strip()) > 4:
|
||||||
|
gen = gen.replace(question_split[-1], "")
|
||||||
|
|
||||||
|
for key, val in sorted(choice_dict.items(), key=lambda x: len(x[1]), reverse=True):
|
||||||
|
gen = gen.replace(val.rstrip("。"), key)
|
||||||
|
return gen
|
||||||
|
|
||||||
|
def extract_answer(self, response, row):
|
||||||
|
prompt = row["question"]
|
||||||
|
gen = self.process_before_extraction(
|
||||||
|
response, prompt, {choice: row[choice] for choice in self.choices}
|
||||||
|
)
|
||||||
|
if not isinstance(prompt, str):
|
||||||
|
prompt = prompt[0]
|
||||||
|
pred = self.extract_choice(gen, prompt, [row[choice] for choice in self.choices])
|
||||||
|
return pred
|
||||||
|
|
||||||
def build_prompt(self, text):
|
def build_prompt(self, text):
|
||||||
return "[Round {}]\n\n问:{}\n\n答:".format(1, text)
|
return "[Round {}]\n\n问:{}\n\n答:".format(1, text)
|
||||||
|
|
||||||
|
|
@ -168,7 +213,7 @@ class ChatGLMEvaluator(Evaluator):
|
||||||
eval_type="validation", # "test","validation",
|
eval_type="validation", # "test","validation",
|
||||||
dev_df=None,
|
dev_df=None,
|
||||||
few_shot=False,
|
few_shot=False,
|
||||||
cot=False,
|
cot=True,
|
||||||
):
|
):
|
||||||
if eval_type == "validation":
|
if eval_type == "validation":
|
||||||
correct_num = 0
|
correct_num = 0
|
||||||
|
|
@ -200,12 +245,7 @@ class ChatGLMEvaluator(Evaluator):
|
||||||
elif eval_type == "test":
|
elif eval_type == "test":
|
||||||
answers = {}
|
answers = {}
|
||||||
for i, row in tqdm(test_df.iterrows(), total=len(test_df)):
|
for i, row in tqdm(test_df.iterrows(), total=len(test_df)):
|
||||||
question = self.format_example(row)
|
question = self.format_example(row, include_answer=False, cot=cot)
|
||||||
response, _ = self.model.chat(
|
answers[str(i)] = self.generate_dist(self.model, self.tokenizer, question, do_sample=False, max_length=2048, history=[])
|
||||||
self.tokenizer,
|
|
||||||
question,
|
|
||||||
history=None,
|
|
||||||
)
|
|
||||||
pred = self.extract_answer(response, row)
|
|
||||||
answers[str(i)] = pred
|
|
||||||
return None, answers
|
return None, answers
|
||||||
68
python/llm/dev/benchmark/ceval/organize_results.py
Normal file
68
python/llm/dev/benchmark/ceval/organize_results.py
Normal file
|
|
@ -0,0 +1,68 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import json
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
result_path = sys.argv[1]
|
||||||
|
|
||||||
|
column_size = [25, 15, 10, 18, 15, 10, 10, 10]
|
||||||
|
pad_string = lambda x, l: [i.ljust(j) for i, j in zip(x, l)]
|
||||||
|
column_names = ["Model Name", "Precision", "STEM", "Social Science", "Humanities", "Other", "Hard", "Average"]
|
||||||
|
|
||||||
|
print(f'\nDumping results for C-Eval score:\n')
|
||||||
|
print(' '.join(pad_string(column_names, column_size)))
|
||||||
|
print()
|
||||||
|
|
||||||
|
file_lst = os.listdir(result_path)
|
||||||
|
file_lst = [f'{result_path}/{i}' for i in file_lst]
|
||||||
|
|
||||||
|
organized_dict = {} # {'Qwen-7B': {'sym_int4': [], 'mixed_fp4': }}
|
||||||
|
for file in file_lst:
|
||||||
|
# Read the JSON file
|
||||||
|
with open(file, 'r') as file:
|
||||||
|
data = json.load(file)
|
||||||
|
|
||||||
|
result_lst = [data['Model Name'], data['Precision']]
|
||||||
|
|
||||||
|
result_lst += data['Results']
|
||||||
|
|
||||||
|
# store in the organized dictionary
|
||||||
|
try:
|
||||||
|
organized_dict[data['Model Name']][data['Precision']] = result_lst
|
||||||
|
except:
|
||||||
|
organized_dict[data['Model Name']] = {}
|
||||||
|
organized_dict[data['Model Name']][data['Precision']] = result_lst
|
||||||
|
|
||||||
|
# define the print precision order
|
||||||
|
precision_order = ['sym_int4', 'mixed_fp4', 'fp4', 'sym_int8', 'fp8_e4m3', 'fp8_e5m2', 'mixed_fp8']
|
||||||
|
|
||||||
|
# print the results
|
||||||
|
for model_name in organized_dict.keys():
|
||||||
|
for precision in precision_order:
|
||||||
|
try:
|
||||||
|
print(' '.join(pad_string(organized_dict[model_name][precision], column_size)))
|
||||||
|
except KeyError:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# separate between models
|
||||||
|
print()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Loading…
Reference in a new issue