Load Mixtral GGUF Model (#9690)

* Load Mixtral GGUF Model

* refactor

* fix empty tensor when to cpu

* update gpu and cpu readmes

* add dtype when set tensor into module
This commit is contained in:
Heyang Sun 2023-12-19 13:54:38 +08:00 committed by GitHub
parent d0a3095b97
commit 1fa7793fc0
4 changed files with 117 additions and 6 deletions

View file

@ -4,12 +4,13 @@ In this directory, you will find examples on how to load GGUF model into `bigdl-
## Verified Models(Q4_0)
- [Llama-2-7B-Chat-GGUF](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/tree/main)
- [Mistral-7B-Instruct-v0.1-GGUF](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF)
- [Mixtral-8x7B-v0.1-GGUF](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF)
- [Baichuan2-7B-Chat-GGUF](https://huggingface.co/second-state/Baichuan2-7B-Chat-GGUF/tree/main)
## Requirements
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../../../README.md#system-support) for more information.
**Important: Please make sure you have installed `transformers==4.33.0` to run the example.**
**Important: Please make sure you have installed `transformers==4.36.0` to run the example.**
## Example: Load gguf model using `from_gguf()` API

View file

@ -4,12 +4,13 @@ In this directory, you will find examples on how to load GGUF model into `bigdl-
## Verified Models(Q4_0)
- [Llama-2-7B-Chat-GGUF](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/tree/main)
- [Mistral-7B-Instruct-v0.1-GGUF](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF)
- [Mixtral-8x7B-v0.1-GGUF](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF)
- [Baichuan2-7B-Chat-GGUF](https://huggingface.co/second-state/Baichuan2-7B-Chat-GGUF/tree/main)
## Requirements
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../../../README.md#system-support) for more information.
**Important: Please make sure you have installed `transformers==4.33.0` to run the example.**
**Important: Please make sure you have installed `transformers==4.36.0` to run the example.**
## Example: Load gguf model using `from_gguf()` API
In the example [generate.py](./generate.py), we show a basic use case to load a GGUF LLaMA2 model into `bigdl-llm` using `from_gguf()` API, with BigDL-LLM optimizations.

View file

@ -40,17 +40,19 @@ def load_gguf_model(fpath: str, dtype: torch.dtype = torch.float):
with torch.no_grad():
if model_family == "llama":
model_name = loader.config["general.name"].lower()
if "mistral" in model_name:
general_name = loader.config["general.name"].lower()
if "mixtral" in general_name:
# mixtral, which also enjoys a general architecture of llama
from .models.mixtral import load_gguf_mixtral
model, tokenizer = load_gguf_mixtral(loader, dtype)
elif "mistral" in general_name:
from .models.mistral import load_gguf_mistral
model, tokenizer = load_gguf_mistral(loader, dtype)
else:
from .models.llama import load_gguf_llama
model, tokenizer = load_gguf_llama(loader, dtype)
elif model_family == "baichuan":
from .models.baichuan import load_gguf_baichuan
model, tokenizer = load_gguf_baichuan(loader, dtype)
else:
invalidInputError(False, f"Unsupported model family: {model_family}")

View file

@ -0,0 +1,107 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import torch
from accelerate import init_empty_weights
from accelerate.utils import set_module_tensor_to_device
from tempfile import NamedTemporaryFile
from transformers import MixtralConfig, MixtralForCausalLM, LlamaTokenizer
from ..gguf import GGUFFileLoader
def load_gguf_mixtral(loader: GGUFFileLoader, dtype: torch.dtype = torch.float):
# mixtral enjoys a general architecture of llma
# e.g. it applies llama tokenizer
config = loader.config
num_local_experts = config['llama.expert_count']
num_experts_per_tok = config['llama.expert_used_count']
n_head = config['llama.attention.head_count']
n_head_kv = config['llama.attention.head_count_kv']
hidden_size = config['llama.embedding_length']
mixtral_config = MixtralConfig(
vocab_size=len(config['tokenizer.ggml.tokens']),
hidden_size=hidden_size,
intermediate_size=config['llama.feed_forward_length'],
num_hidden_layers=config['llama.block_count'],
num_attention_heads=config['llama.attention.head_count'],
num_key_value_heads=config['llama.attention.head_count_kv'],
max_position_embeddings=config['llama.context_length'],
rms_norm_eps=config['llama.attention.layer_norm_rms_epsilon'],
pad_token_id=config['tokenizer.ggml.padding_token_id'],
bos_token_id=config['tokenizer.ggml.bos_token_id'],
eos_token_id=config['tokenizer.ggml.eos_token_id'],
num_local_experts=num_local_experts,
num_experts_per_tok=num_experts_per_tok,
)
ckpt = loader.tensors(dtype)
from .llama import restore_llama_weight
ckpt = restore_llama_weight(ckpt, n_head, n_head_kv)
state_dict = {}
state_dict['model.embed_tokens.weight'] = ckpt['token_embd.weight']
state_dict['model.norm.weight'] = ckpt['output_norm.weight']
state_dict['lm_head.weight'] = ckpt['output.weight']
for i in range(config['llama.block_count']):
state_dict[f'model.layers.{i}.self_attn.q_proj.weight'] = \
ckpt[f'blk.{i}.attn_q.weight']
state_dict[f'model.layers.{i}.self_attn.k_proj.weight'] = \
ckpt[f'blk.{i}.attn_k.weight']
state_dict[f'model.layers.{i}.self_attn.v_proj.weight'] = \
ckpt[f'blk.{i}.attn_v.weight']
state_dict[f'model.layers.{i}.self_attn.o_proj.weight'] = \
ckpt[f'blk.{i}.attn_output.weight']
state_dict[f'model.layers.{i}.input_layernorm.weight'] = \
ckpt[f'blk.{i}.attn_norm.weight']
state_dict[f'model.layers.{i}.post_attention_layernorm.weight'] = \
ckpt[f'blk.{i}.ffn_norm.weight']
state_dict[f'model.layers.{i}.block_sparse_moe.gate.weight'] = \
ckpt[f'blk.{i}.ffn_gate_inp.weight'].reshape(num_local_experts, hidden_size)
for j in range(num_local_experts):
state_dict[f'model.layers.{i}.block_sparse_moe.experts.{j}.w1.weight'] = \
(ckpt[f'blk.{i}.ffn_gate.{j}.weight'])
state_dict[f'model.layers.{i}.block_sparse_moe.experts.{j}.w2.weight'] = \
ckpt[f'blk.{i}.ffn_down.{j}.weight']
state_dict[f'model.layers.{i}.block_sparse_moe.experts.{j}.w3.weight'] = \
ckpt[f'blk.{i}.ffn_up.{j}.weight']
with init_empty_weights():
model = MixtralForCausalLM(mixtral_config)
for name, weight in state_dict.items():
set_module_tensor_to_device(model, name, "cpu", weight, dytype=dtype)
model = model.cpu()
from transformers.convert_slow_tokenizer import import_protobuf
spm_pb2 = import_protobuf("Failed to import protobuf")
tokenizer_pieces = loader.tokenizer_pieces()
trainer_spec = spm_pb2.TrainerSpec(byte_fallback=True,
model_type=spm_pb2.TrainerSpec.ModelType.BPE)
proto = spm_pb2.ModelProto(pieces=tokenizer_pieces, trainer_spec=trainer_spec)
proto = proto.SerializeToString()
with NamedTemporaryFile(delete=False) as f:
f.write(proto)
f.close()
tokenizer = LlamaTokenizer(f.name)
os.remove(f.name)
return model, tokenizer