[ADD] add transformer_int4_fp16_loadlowbit_gpu_win api (#11511)
* [ADD] add transformer_int4_fp16_loadlowbit_gpu_win api * [UPDATE] add int4_fp16_lowbit config and description * [FIX] fix run.py mistake * [FIX] fix run.py mistake * [FIX] fix indent; change dtype=float16 to model.half()
This commit is contained in:
parent
f7e957aaf9
commit
1efb6ebe93
3 changed files with 111 additions and 2 deletions
|
|
@ -41,6 +41,7 @@ test_api:
|
|||
# - "transformer_int4_gpu" # on Intel GPU, transformer-like API, (qtype=int4), (dtype=fp32)
|
||||
# - "transformer_int4_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), (dtype=fp32)
|
||||
# - "transformer_int4_loadlowbit_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), use load_low_bit API. Please make sure you have used the save.py to save the converted low bit model
|
||||
# - "transformer_int4_fp16_loadlowbit_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), (dtype=fp16), use load_low_bit API. Please make sure you have used the save.py to save the converted low bit model
|
||||
# - "bigdl_fp16_gpu" # on Intel GPU, use ipex-llm transformers API, (dtype=fp16), (qtype=fp16)
|
||||
# - "optimize_model_gpu" # on Intel GPU, can optimize any pytorch models include transformer model
|
||||
# - "deepspeed_optimize_model_gpu" # on Intel GPU, deepspeed autotp inference
|
||||
|
|
@ -64,7 +65,7 @@ task: 'continuation' # task can be 'continuation', 'QA' and 'summarize'
|
|||
```
|
||||
|
||||
## (Optional) Save model in low bit
|
||||
If you choose the `transformer_int4_loadlowbit_gpu_win` test API, you will need to save the model in low bit first.
|
||||
If you choose the `transformer_int4_loadlowbit_gpu_win` or `transformer_int4_fp16_loadlowbit_gpu_win` test API, you will need to save the model in low bit first.
|
||||
|
||||
Run `python save.py` will save all models declared in `repo_id` list into low bit models under `local_model_hub` folder.
|
||||
|
||||
|
|
|
|||
|
|
@ -17,6 +17,7 @@ test_api:
|
|||
# - "transformer_int4_gpu" # on Intel GPU, transformer-like API, (qtype=int4), (dtype=fp32)
|
||||
# - "transformer_int4_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), (dtype=fp32)
|
||||
# - "transformer_int4_loadlowbit_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), use load_low_bit API. Please make sure you have used the save.py to save the converted low bit model
|
||||
# - "transformer_int4_fp16_loadlowbit_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), (dtype=fp16), use load_low_bit API. Please make sure you have used the save.py to save the converted low bit model
|
||||
# - "bigdl_fp16_gpu" # on Intel GPU, use ipex-llm transformers API, (dtype=fp16), (qtype=fp16)
|
||||
# - "optimize_model_gpu" # on Intel GPU, can optimize any pytorch models include transformer model
|
||||
# - "deepspeed_optimize_model_gpu" # on Intel GPU, deepspeed autotp inference
|
||||
|
|
|
|||
|
|
@ -137,6 +137,10 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
|
|||
# drop the results of the first time for better performance
|
||||
run_transformer_int4_loadlowbit_gpu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, cpu_embedding, batch_size, streaming)
|
||||
result = run_transformer_int4_loadlowbit_gpu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, cpu_embedding, batch_size, streaming)
|
||||
elif test_api == 'transformer_int4_fp16_loadlowbit_gpu_win':
|
||||
# drop the results of the first time for better performance
|
||||
run_transformer_int4_fp16_loadlowbit_gpu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, cpu_embedding, batch_size, streaming)
|
||||
result = run_transformer_int4_fp16_loadlowbit_gpu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, cpu_embedding, batch_size, streaming)
|
||||
elif test_api == 'transformer_autocast_bf16':
|
||||
result = run_transformer_autocast_bf16(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
|
||||
elif test_api == 'bigdl_ipex_bf16':
|
||||
|
|
@ -170,7 +174,7 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
|
|||
low_bit,
|
||||
cpu_embedding,
|
||||
round(result[in_out_pair][-1][5], 2),
|
||||
result[in_out_pair][-1][6] if any(keyword in test_api for keyword in ['int4_gpu', 'int4_fp16_gpu_win', 'int4_loadlowbit_gpu', 'fp16_gpu', 'deepspeed_optimize_model_gpu']) and not lookahead else 'N/A',
|
||||
result[in_out_pair][-1][6] if any(keyword in test_api for keyword in ['int4_gpu', 'int4_fp16_gpu_win', 'int4_loadlowbit_gpu', 'int4_fp16_loadlowbit_gpu', 'fp16_gpu', 'deepspeed_optimize_model_gpu']) and not lookahead else 'N/A',
|
||||
streaming if 'win' in test_api else 'N/A',
|
||||
use_fp16_torch_dtype if 'pipeline_parallel_gpu' in test_api else 'N/A'],
|
||||
)
|
||||
|
|
@ -1191,6 +1195,109 @@ def run_transformer_int4_loadlowbit_gpu_win(repo_id,
|
|||
return result
|
||||
|
||||
|
||||
def run_transformer_int4_fp16_loadlowbit_gpu_win(repo_id,
|
||||
local_model_hub,
|
||||
in_out_pairs,
|
||||
warm_up,
|
||||
num_trials,
|
||||
num_beams,
|
||||
low_bit,
|
||||
cpu_embedding,
|
||||
batch_size,
|
||||
streaming):
|
||||
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer, TextStreamer
|
||||
model_path = get_model_path(repo_id, local_model_hub)
|
||||
# Load BigDL-LLM optimized low bit model
|
||||
st = time.perf_counter()
|
||||
if repo_id in CHATGLM_IDS:
|
||||
model = AutoModel.load_low_bit(model_path+'-'+low_bit, optimize_model=True, trust_remote_code=True,
|
||||
use_cache=True, cpu_embedding=cpu_embedding).eval()
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path+'-'+low_bit, trust_remote_code=True)
|
||||
model = model.half().to('xpu')
|
||||
elif repo_id in LLAMA_IDS:
|
||||
model = AutoModelForCausalLM.load_low_bit(model_path+'-'+low_bit, optimize_model=True, trust_remote_code=True,
|
||||
use_cache=True, cpu_embedding=cpu_embedding).eval()
|
||||
tokenizer = LlamaTokenizer.from_pretrained(model_path+'-'+low_bit, trust_remote_code=True)
|
||||
model = model.half().to('xpu')
|
||||
elif repo_id in LLAVA_IDS:
|
||||
llava_repo_dir = os.environ.get('LLAVA_REPO_DIR')
|
||||
sys.path.append(rf"{llava_repo_dir}")
|
||||
from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
|
||||
model = AutoModelForCausalLM.load_low_bit(model_path+'-'+low_bit, optimize_model=True, trust_remote_code=True,
|
||||
use_cache=True, cpu_embedding=cpu_embedding).eval()
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path+'-'+low_bit, trust_remote_code=True)
|
||||
model = model.half().to('xpu')
|
||||
else:
|
||||
model = AutoModelForCausalLM.load_low_bit(model_path+'-'+low_bit, optimize_model=True, trust_remote_code=True,
|
||||
use_cache=True, cpu_embedding=cpu_embedding).eval()
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path+'-'+low_bit, trust_remote_code=True)
|
||||
model = model.half().to('xpu')
|
||||
end = time.perf_counter()
|
||||
load_time = end - st
|
||||
print(">> loading of model costs {}s and {}GB".format(load_time, torch.xpu.memory.memory_reserved()/(1024**3)))
|
||||
|
||||
model = BenchmarkWrapper(model)
|
||||
streamer = TextStreamer(tokenizer, skip_prompt=True)
|
||||
|
||||
result = {}
|
||||
with torch.inference_mode():
|
||||
for in_out in in_out_pairs:
|
||||
try:
|
||||
in_out_len = in_out.split("-")
|
||||
in_len = int(in_out_len[0])
|
||||
out_len = int(in_out_len[1])
|
||||
# As different tokenizer has different encodings,
|
||||
# in_len.txt maybe shorter than we need,
|
||||
# use much longer context to make sure input length
|
||||
test_length = min(in_len*2, 8192)
|
||||
while test_length not in [32, 256, 1024, 2048, 8192]:
|
||||
test_length = test_length * 2
|
||||
input_str = open(f"prompt/continuation/{test_length}.txt", 'r').read()
|
||||
# As different tokenizer has different encodings,
|
||||
# slice the input_ids to ensure the prompt length is required length.
|
||||
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
||||
input_ids = input_ids[:, :in_len]
|
||||
true_str = tokenizer.batch_decode(input_ids)[0]
|
||||
input_list = [true_str] * batch_size
|
||||
input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to('xpu')
|
||||
actual_in_len = input_ids.shape[1]
|
||||
result[in_out] = []
|
||||
for i in range(num_trials + warm_up):
|
||||
st = time.perf_counter()
|
||||
if streaming:
|
||||
output_ids = model.generate(input_ids, do_sample=False,
|
||||
max_new_tokens=out_len, min_new_tokens=out_len,
|
||||
num_beams=num_beams, streamer=streamer)
|
||||
else:
|
||||
output_ids = model.generate(input_ids, do_sample=False,
|
||||
max_new_tokens=out_len, min_new_tokens=out_len,
|
||||
num_beams=num_beams)
|
||||
torch.xpu.synchronize()
|
||||
end = time.perf_counter()
|
||||
output_ids = output_ids.cpu()
|
||||
print("model generate cost: " + str(end - st))
|
||||
output = tokenizer.batch_decode(output_ids)
|
||||
if not streaming:
|
||||
print(output[0])
|
||||
actual_out_len = output_ids.shape[1] - actual_in_len
|
||||
if i >= warm_up:
|
||||
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
|
||||
actual_in_len, actual_out_len, load_time, model.peak_memory])
|
||||
# torch.xpu.empty_cache() # this may make first token slower
|
||||
except RuntimeError:
|
||||
traceback.print_exc()
|
||||
pass
|
||||
torch.xpu.synchronize()
|
||||
torch.xpu.empty_cache()
|
||||
model.to('cpu')
|
||||
torch.xpu.synchronize()
|
||||
torch.xpu.empty_cache()
|
||||
del model
|
||||
gc.collect()
|
||||
return result
|
||||
|
||||
|
||||
def run_transformer_autocast_bf16( repo_id,
|
||||
local_model_hub,
|
||||
in_out_pairs,
|
||||
|
|
|
|||
Loading…
Reference in a new issue