Update yarn tutorial (#6456)

* update yarn tutorial

* style

* update

* revert

* minor
This commit is contained in:
Kai Huang 2022-11-07 13:58:58 +08:00 committed by GitHub
parent 5346ef45d8
commit 1e7681325b
2 changed files with 208 additions and 303 deletions

View file

@ -1,6 +1,37 @@
# Installation
We recommend using [conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/) to prepare the Python environment. Install conda and create an environment for BigDL Orca:
## Install Java
You need to download and install JDK in the environment, and properly set the environment variable `JAVA_HOME`. JDK8 is highly recommended.
```bash
# For Ubuntu
sudo apt-get install openjdk-8-jre
export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/
# For CentOS
su -c "yum install java-1.8.0-openjdk"
export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.282.b08-1.el7_9.x86_64/jre
export PATH=$PATH:$JAVA_HOME/bin
java -version # Verify the version of JDK.
```
## Install Anaconda
We recommend using [conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/) to prepare the Python environment.
You can follow the steps below to install conda:
```bash
# Download Anaconda installation script
wget -P /tmp https://repo.anaconda.com/archive/Anaconda3-2020.02-Linux-x86_64.sh
# Execute the script to install conda
bash /tmp/Anaconda3-2020.02-Linux-x86_64.sh
# Run this command in your terminal to activate conda
source ~/.bashrc
```
Then create a Python environment for BigDL Orca:
```bash
conda create -n py37 python=3.7 # "py37" is conda environment name, you can use any name you like.
conda activate py37

View file

@ -1,51 +1,54 @@
# Run on Hadoop/YARN Clusters
This tutorial provides a step-by-step guide on how to run BigDL-Orca programs on Apache Hadoop/YARN clusters, using a [PyTorch Fashin-MNIST program](https://github.com/intel-analytics/BigDL/blob/main/python/orca/tutorial/pytorch/FashionMNIST/) as a working example.
This tutorial provides a step-by-step guide on how to run BigDL-Orca programs on Apache Hadoop/YARN clusters, using a [PyTorch Fashion-MNIST program](https://github.com/intel-analytics/BigDL/blob/main/python/orca/tutorial/pytorch/FashionMNIST/) as a working example.
## 1. Key Concepts
### 1.1 Init_orca_context
The **Client Node** that appears in this tutorial refer to the machine where you launch or submit your applications.
---
## 1. Basic Concepts
### 1.1 init_orca_context
A BigDL Orca program usually starts with the initialization of OrcaContext. For every BigDL Orca program, you should call `init_orca_context` at the beginning of the program as below:
```python
from bigdl.orca import init_orca_context
init_orca_context(cluster_mode, cores, memory, num_nodes, driver_cores, driver_memory, extra_python_lib, conf)
sc = init_orca_context(cluster_mode, cores, memory, num_nodes, driver_cores, driver_memory, extra_python_lib, conf)
```
In `init_orca_context`, you may specify necessary runtime configurations for running the example on YARN, including:
* `cluster_mode`: a String that specifies the underlying cluster; valid value includes `"local"`, __`"yarn-client"`__, __`"yarn-cluster"`__, `"k8s-client"`, `"k8s-cluster"`, `"bigdl-submit"`, `"spark-submit"`.
* `cores`: an Integer that specifies the number of cores for each executor (default to be `2`).
* `memory`: a String that specifies the memory for each executor (default to be `"2g"`).
* `num_nodes`: an Integer that specifies the number of executors (default to be `1`).
* `driver_cores`: an Integer that specifies the number of cores for the driver node (default to be `4`).
* `driver_memory`: a String that specifies the memory for the driver node (default to be `"1g"`).
* `extra_python_lib`: a String that specifies the path to extra Python package, one of `.py`, `.zip` or `.egg` files (default to be `None`).
* `conf`: a Key-Value format to append extra conf for Spark (default to be `None`).
* `cluster_mode`: one of `"yarn-client"`, `"yarn-cluster"`, `"bigdl-submit"` or `"spark-submit"` when you run on Hadoop/YARN clusters.
* `cores`: an integer that specifies the number of cores for each executor (default to be `2`).
* `memory`: a string that specifies the memory for each executor (default to be `"2g"`).
* `num_nodes`: an integer that specifies the number of executors (default to be `1`).
* `driver_cores`: an integer that specifies the number of cores for the driver node (default to be `4`).
* `driver_memory`: a string that specifies the memory for the driver node (default to be `"1g"`).
* `extra_python_lib`: a string that specifies the path to extra Python packages (default to be `None`). `.py`, `.zip` or `.egg` files are supported.
* `conf`: a dictionary to append extra conf for Spark (default to be `None`).
__Note__:
* All arguments __except__ `cluster_mode` will be ignored when using `bigdl-submit` or `spark-submit` to submit and run Orca programs, in which case you are supposed to specify the configurations via the submit command.
* All the arguments __except__ `cluster_mode` will be ignored when using [`bigdl-submit`](#use-bigdl-submit) or [`spark-submit`](#use-spark-submit) to submit and run Orca programs, in which case you are supposed to specify these configurations via the submit command.
After the Orca programs finish, you should call `stop_orca_context` at the end of the program to release resources and shutdown the underlying distributed runtime engine (such as Spark or Ray).
After Orca programs finish, you should always call `stop_orca_context` at the end of the program to release resources and shutdown the underlying distributed runtime engine (such as Spark or Ray).
```python
from bigdl.orca import stop_orca_context
stop_orca_context()
```
For more details, please see [OrcaContext](https://bigdl.readthedocs.io/en/latest/doc/Orca/Overview/orca-context.html).
For more details, please see [OrcaContext](../Overview/orca-context.md).
### 1.2 Yarn-Client & Yarn-Cluster
The difference between yarn-client and yarn-cluster is where you run your Spark driver.
The difference between yarn-client mode and yarn-cluster mode is where you run your Spark driver.
For yarn-client, the Spark driver runs in the client process, and the application master is only used for requesting resources from YARN, while for yarn-cluster the Spark driver runs inside an application master process which is managed by YARN in the cluster.
For more details, please see [Launching Spark on YARN](https://spark.apache.org/docs/latest/running-on-yarn.html#launching-spark-on-yarn).
### 1.3 Use Distributed Storage When Running on YARN
__Note:__
* When you are running programs on YARN, you are recommended to load data from a distributed storage (e.g. HDFS or S3) instead of the local file system.
### 1.3 Distributed storage on YARN
__Note__:
* When you run programs on YARN, you are highly recommended to load/write data from/to a distributed storage (e.g. [HDFS](https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html) or [S3](https://aws.amazon.com/s3/)) instead of the local file system.
The Fashion-MNIST example uses a utility function `get_remote_file_to_local` provided by BigDL to download datasets and create PyTorch Dataloader on each executor.
The Fashion-MNIST example in this tutorial uses a utility function `get_remote_file_to_local` provided by BigDL to download datasets and create the PyTorch DataLoader on each executor.
```python
import torch
@ -68,160 +71,97 @@ def train_data_creator(config, batch_size):
return trainloader
```
---
## 2. Prepare Environment
Before running the BigDL program on YARN, you need to setup the environment following the steps below:
Before running BigDL Orca programs on YARN, you need to properly setup the environment following the steps below.
### 2.1 Setup JAVA & Hadoop Environment
**Setup JAVA Environment**
- See [here](../Overview/install.md#install-java) to prepare Java in your cluster.
You need to download and install JDK in the environment, and properly set the environment variable `JAVA_HOME`, which is required by Spark. JDK8 is highly recommended.
```bash
# For Ubuntu
sudo apt-get install openjdk-8-jre
export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/
# For CentOS
su -c "yum install java-1.8.0-openjdk"
export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.282.b08-1.el7_9.x86_64/jre
export PATH=$PATH:$JAVA_HOME/bin
java -version # Verify the version of JDK.
```
**Setup Hadoop Environment**
Check the Hadoop setup and configurations of our cluster. Make sure you correctly set the environment variable `HADOOP_CONF_DIR`, which is needed to initialize Spark on YARN:
- Check the Hadoop setup and configurations of your cluster. Make sure you correctly set the environment variable `HADOOP_CONF_DIR`, which is needed to initialize Spark on YARN:
```bash
export HADOOP_CONF_DIR=/path/to/hadoop/conf
```
### 2.2 Install Python Libraries
**Install Conda**
- See [here](../Overview/install.md#install-anaconda) to install conda and prepare the Python environment on the __Client Node__.
You need first to use conda to prepare the Python environment on the __Client Node__ (where you submit applications). You could download and install Conda following [Conda User Guide](https://docs.conda.io/projects/conda/en/latest/user-guide/install/linux.html) or executing the command as below.
- See [here](../Overview/install.md#to-use-basic-orca-features) to install BigDL Orca in the created conda environment.
- You should install all the other Python libraries that you need in your program in the conda environment as well.
- For more details, please see [Python User Guide](https://bigdl.readthedocs.io/en/latest/doc/UserGuide/python.html).
### 2.3 Run on CDH
* For [CDH](https://www.cloudera.com/products/open-source/apache-hadoop/key-cdh-components.html) users, the environment variable `HADOOP_CONF_DIR` should be `/etc/hadoop/conf` by default.
* The __Client Node__ may have already installed a different version of Spark than the one installed with BigDL. To avoid conflicts, unset all Spark-related environment variables (you may use use `env | grep SPARK` to find all of them):
```bash
# Download Anaconda installation script
wget -P /tmp https://repo.anaconda.com/archive/Anaconda3-2020.02-Linux-x86_64.sh
# Execute the script to install conda
bash /tmp/Anaconda3-2020.02-Linux-x86_64.sh
# Please type this command in your terminal to activate Conda environment
source ~/.bashrc
unset SPARK_HOME
unset ...
```
**Use Conda to install BigDL and other Python libraries**
Create a conda environment, install BigDL and all the needed Python libraries in the created conda environment:
``` bash
# "env" is conda environment name, you can use any name you like.
# Please change Python version to 3.6 if you need a Python 3.6 environment.
conda create -n env python=3.7
conda activate env
```
You can install the latest release version of BigDL (built on top of Spark 2.4.6 by default) as follows:
```bash
pip install bigdl
```
You can install the latest nightly build of BigDL as follows:
```bash
pip install --pre --upgrade bigdl
```
__Notes:__
* Using Conda to install BigDL will automatically install libraries including `conda-pack`, `pyspark==2.4.6`, and other related dependencies.
* You can install BigDL built on top of Spark 3.1.2 as follows:
```bash
# Install the latest release version
pip install bigdl-spark3
# Install the latest nightly build version
pip install --pre --upgrade bigdl-spark3
```
Installing bigdl-spark3 will automatically install `pyspark==3.1.2`.
* You also need to install any additional python libraries that your application depends on in this Conda environment.
Please see more details in [Python User Guide](https://bigdl.readthedocs.io/en/latest/doc/UserGuide/python.html).
### 2.3 Notes for CDH Users
* For CDH users, the environment variable `HADOOP_CONF_DIR` should be `/etc/hadoop/conf` by default.
* The __Client Node__ (where you submit applications) may have already installed a different version of Spark than the one installed with BigDL. To avoid conflicts, unset all Spark-related environment variables (you may use use `env | grep SPARK` to find all of them):
```bash
unset SPARK_HOME
unset SPARK_VERSION
unset ...
```
---
## 3. Prepare Dataset
To run the example on YARN, you should upload the Fashion-MNIST dataset to a distributed storage (such as HDFS or S3).
First, please download the Fashion-MNIST dataset manually on your __Client Node__ (where you submit the program to YARN).
First, download the Fashion-MNIST dataset manually on your __Client Node__:
```bash
# PyTorch official dataset download link
git clone https://github.com/zalandoresearch/fashion-mnist.git
mv /path/to/fashion-mnist/data/fashion /path/to/local/data/FashionMNIST/raw
```
Then upload it to a distributed storage.
Then upload it to a distributed storage. Sample command to upload data to HDFS is as follows:
```bash
# Upload to HDFS
hdfs dfs -put /path/to/local/data/FashionMNIST hdfs://path/to/remote/data
```
In the given example, you can specify the argument `--remote_dir` to be the directory on a distributed storage for the Fashion-MNIST dataset.
---
## 4. Prepare Custom Modules
Spark allows to upload Python files (`.py`), and zipped Python packages (`.zip`) across the cluster by setting `--py-files` option in Spark scripts or `extra_python_lib` in `init_orca_context`.
Spark allows to upload Python files (`.py`), and zipped Python packages (`.zip`) across the cluster by setting `--py-files` option in Spark scripts or specifying `extra_python_lib` in `init_orca_context`.
The FasionMNIST example needs to import modules from `model.py`.
* When using `python` command, please specify `extra_python_lib` in `init_orca_context`.
```python
from bigdl.orca import init_orca_context, stop_orca_context
from model import model_creator, optimizer_creator
The FasionMNIST example needs to import modules from [`model.py`](https://github.com/intel-analytics/BigDL/blob/main/python/orca/tutorial/pytorch/FashionMNIST/model.py).
* When using [`python` command](#use-python-command), please specify `extra_python_lib` in `init_orca_context`.
```python
init_orca_context(..., extra_python_lib="model.py")
```
# Please switch the `cluster_mode` to `yarn-cluster` when running on cluster mode.
init_orca_context(cluster_mode="yarn-client", cores=4, memory="10g", num_nodes=2,
driver_cores=2, driver_memory="4g",
extra_python_lib="model.py")
```
For more details, please see [BigDL Python Dependencies](https://bigdl.readthedocs.io/en/latest/doc/Orca/Overview/orca-context.html#python-dependencies).
Please see more details in [Orca Document](https://bigdl.readthedocs.io/en/latest/doc/Orca/Overview/orca-context.html#python-dependencies).
* When using `bigdl-submit` or `spark-submit` script, please specify `--py-files` option in the script.
```bash
bigdl-submit # or spark-submit
* When using [`bigdl-submit`](#use-bigdl-submit) or [`spark-submit`](#use-spark-submit), please specify `--py-files` option in the submit command.
```bash
bigdl-submit # or spark-submit
--master yarn \
--delopy-mode client \
--py-files model.py
train.py
```
```
Import custom modules at the beginning of the example:
```python
from bigdl.orca import init_orca_context, stop_orca_context
from model import model_creator, optimizer_creator
For more details, please see [Spark Python Dependencies](https://spark.apache.org/docs/latest/submitting-applications.html).
init_orca_context(cluster_mode="bigdl-submit") # or spark-submit
```
* After uploading `model.py` to YARN, you can import this custom module as follows:
```python
from model import model_creator, optimizer_creator
```
Please see more details in [Spark Document](https://spark.apache.org/docs/latest/submitting-applications.html).
__Note__:
__Note:__
* If your program depends on a nested directory of Python files, you are recommended to follow the steps below to use a zipped package instead.
1. Compress the directory into a zipped package.
```bash
zip -q -r FashionMNIST_zipped.zip FashionMNIST
```
2. Please upload the zipped package (`FashionMNIST_zipped.zip`) to YARN.
* When using `python` command, please specify `extra_python_lib` argument in `init_orca_context`.
If your program depends on a nested directory of Python files, you are recommended to follow the steps below to use a zipped package instead.
* When using `bigdl-submit` or `spark-submit` script, please specify `--py-files` option in the script.
3. You can then import the custom modules from the unzipped file in your program as below.
```python
from FashionMNIST.model import model_creator, optimizer_creator
```
1. Compress the directory into a zipped package.
```bash
zip -q -r FashionMNIST_zipped.zip FashionMNIST
```
2. Upload the zipped package (`FashionMNIST_zipped.zip`) to YARN by setting `--py-files` or specifying `extra_python_lib` as discussed above.
3. You can then import the custom modules from the unzipped file in your program as follows:
```python
from FashionMNIST.model import model_creator, optimizer_creator
```
---
## 5. Run Jobs on YARN
In the following part, we will illustrate three ways to submit and run BigDL Orca applications on YARN.
@ -231,99 +171,74 @@ In the following part, we will illustrate three ways to submit and run BigDL Orc
You can choose one of them based on your preference or cluster settings.
### 5.1 Use `python` Command
This is the easiest and most recommended way to run BigDL on YARN.
We provide the running command for the [Fashion-MNIST example](https://github.com/intel-analytics/BigDL/blob/main/python/orca/tutorial/pytorch/FashionMNIST/) in this section.
__Note:__
* You only need to prepare the environment on the __Client Node__ (where you submit applications), all dependencies would be automatically packaged and distributed to YARN cluster.
### 5.1 Use `python` Command
This is the easiest and most recommended way to run BigDL Orca on YARN as a normal Python program. Using this way, you only need to prepare the environment on the __Client Node__ and the environment would be automatically packaged and distributed to the YARN cluster.
See [here](#init-orca-context) for the runtime configurations.
#### 5.1.1 Yarn Client
Please call `init_orca_context` at the very beginning of each Orca program.
```python
from bigdl.orca import init_orca_context
init_orca_context(cluster_mode="yarn-client", cores=4, memory="10g", num_nodes=2,
driver_cores=2, driver_memory="4g",
extra_python_lib="model.py")
```
Run the example following command below:
Run the example with the following command by setting the cluster_mode to "yarn-client":
```bash
python train.py --cluster_mode yarn-client --remote_dir hdfs://path/to/remote/data
```
* `--cluster_mode`: set the cluster_mode in `init_orca_context`.
* `--remote_dir`: directory on a distributed storage for the dataset (see __[Section 3](#3-prepare-dataset)__).
__Note__:
* Please refer to __[Section 4](#4-prepare-custom-modules)__ for the description of `extra_python_lib`.
#### 5.1.2 Yarn Cluster
Please call `init_orca_context` at the very beginning of each Orca program.
```python
from bigdl.orca import init_orca_context
init_orca_context(cluster_mode="yarn-cluster", cores=4, memory="10g", num_nodes=2,
driver_cores=2, driver_memory="4g",
extra_python_lib="model.py")
```
Run the example following command below:
Run the example with the following command by setting the cluster_mode to "yarn-cluster":
```bash
python train.py --cluster_mode yarn-cluster --remote_dir hdfs://path/to/remote/data
```
* `--cluster_mode`: set the cluster_mode in `init_orca_context`.
* `--remote_dir`: directory on a distributed storage for the dataset (see __[Section 3](#3-prepare-dataset)__).
__Note__:
* Please refer to __[Section 4](#4-prepare-custom-modules)__ for the description of `extra_python_lib`.
#### 5.1.3 Jupyter Notebook
You can easily run the example in a Jupyter Notebook.
You can easily run the example in a Jupyter Notebook using __`yarn-client` mode__. Launch the notebook using the following command:
```bash
# Start a jupyter notebook
jupyter notebook --notebook-dir=/path/to/notebook/directory --ip=* --no-browser
```
You can copy the code of `train.py` to the notebook and run the cells on `yarn-client` mode.
```python
from bigdl.orca import init_orca_context
init_orca_context(cluster_mode="yarn-client", cores=4, memory="10g", num_nodes=2,
You can copy the code in [train.py](https://github.com/intel-analytics/BigDL/blob/main/python/orca/tutorial/pytorch/FashionMNIST/train.py) to the notebook and run the cells. Set the cluster_mode to "yarn-client" in `init_orca_context`.
```python
sc = init_orca_context(cluster_mode="yarn-client", cores=4, memory="10g", num_nodes=2,
driver_cores=2, driver_memory="4g",
extra_python_lib="model.py")
```
__Note:__
* Jupyter Notebook cannot run on `yarn-cluster`, as the driver is not running on the __Client Node__(the notebook page).
Note that Jupyter Notebook cannot run on `yarn-cluster` mode, as the driver is not running on the __Client Node__ (where you run the notebook).
### 5.2 Use `bigdl-submit`
For users who want to use a script instead of Python command, BigDL provides an easy-to-use `bigdl-submit` script, which could automatically setup configuration and jars files from the current activate Conda environment.
For users who want to use a script instead of Python command, BigDL provides an easy-to-use `bigdl-submit` script, which could automatically setup BigDL configuration and jars files from the current activate conda environment.
Please call `init_orca_context` at the very beginning of the program.
Set the cluster_mode to "bigdl-submit" in `init_orca_context`.
```python
from bigdl.orca import init_orca_context
init_orca_context(cluster_mode="bigdl-submit")
sc = init_orca_context(cluster_mode="bigdl-submit")
```
On the __Client Node__ (where you submit applications), before submitting the example:
1. Install and activate Conda environment (see __[Section 2.2.1](#221-install-conda)__).
2. Use Conda to install BigDL and other Python libraries (see __[Section 2.2.2](#222-use-conda-to-install-bigdl-and-other-python-libraries)__).
3. Pack the current activate Conda environment to an archive.
```bash
conda pack -o environment.tar.gz
```
Pack the current activate conda environment to an archive on the __Client Node__ before submitting the example:
```bash
conda pack -o environment.tar.gz
```
Some runtime configurations for Spark are as follows:
* `--executor-memory`: the memory for each executor.
* `--driver-memory`: the memory for the driver node.
* `--executor-cores`: the number of cores for each executor.
* `--num_executors`: the number of executors.
* `--py-files`: the extra Python dependency files to be uploaded to YARN.
* `--archives`: the conda archive to be uploaded to YARN.
#### 5.2.1 Yarn Client
Submit and run the example on `yarn-client` mode following `bigdl-submit` script below:
Submit and run the example for `yarn-client` mode following the `bigdl-submit` script below:
```bash
bigdl-submit \
--master yarn \
--deploy-mode client \
--executor-memory 10g \
--driver-memory 10g \
--executor-cores 8 \
--driver-memory 4g \
--executor-cores 4 \
--num-executors 2 \
--py-files model.py \
--archives /path/to/environment.tar.gz#environment \
@ -332,32 +247,21 @@ bigdl-submit \
train.py --cluster_mode bigdl-submit --remote_dir hdfs://path/to/remote/data
```
In the `bigdl-submit` script:
* `--master`: the spark master, set it to yarn;
* `--deploy-mode`: set it to client when running programs on yarn-client mode;
* `--executor-memory`: set the memory for each executor;
* `--driver-memory`: set the memory for the driver node;
* `--executor-cores`: set the cores number for each executor;
* `--num_executors`: set the number of executors;
* `--py-files`: upload extra Python dependency files to YARN;
* `--archives`: upload the Conda archive to YARN;
* `--conf spark.pyspark.driver.python`: set the activate Python location on __Client Node__ as driver's Python environment (find the location by running `which python`);
* `--conf spark.pyspark.python`: set the Python location in Conda archive as executors' Python environment;
__Notes:__
* `--cluster_mode`: set the cluster_mode in `init_orca_context`.
* `--remote_dir`: directory on a distributed storage for the dataset (see __[Section 3](#3-prepare-dataset)__).
* Please refer to __[Section 4](#4-prepare-custom-modules)__ for the description of extra Python dependencies.
* `--master`: the spark master, set it to "yarn".
* `--deploy-mode`: set it to "client" when running programs on yarn-client mode.
* `--conf spark.pyspark.driver.python`: set the activate Python location on __Client Node__ as the driver's Python environment. You can find it by running `which python`.
* `--conf spark.pyspark.python`: set the Python location in conda archive as each executor's Python environment.
#### 5.2.2 Yarn Cluster
Submit and run the program on `yarn-cluster` mode following `bigdl-submit` script below:
Submit and run the program for `yarn-cluster` mode following the `bigdl-submit` script below:
```bash
bigdl-submit \
--master yarn \
--deploy-mode cluster \
--executor-memory 10g \
--driver-memory 10g \
--executor-cores 8 \
--driver-memory 4g \
--executor-cores 4 \
--num-executors 2 \
--py-files model.py \
--archives /path/to/environment.tar.gz#environment \
@ -366,67 +270,63 @@ bigdl-submit \
train.py --cluster_mode bigdl-submit --remote_dir hdfs://path/to/remote/data
```
In the `bigdl-submit` script:
* `--master`: the spark master, set it to `yarn`;
* `--deploy-mode`: set it to `cluster` when running programs on yarn-cluster mode;
* `--executor-memory`: set the memory for each executor;
* `--driver-memory`: set the memory for the driver node;
* `--executor-cores`: set the cores number for each executor;
* `--num_executors`: set the number of executors;
* `--py-files`: upload extra Python dependency files to YARN;
* `--archives`: upload the Conda archive to YARN;
* `--conf spark.yarn.appMasterEnv.PYSPARK_PYTHON`: set the Python location in Conda archive as Python environment of Application Master process;
* `--conf spark.executorEnv.PYSPARK_PYTHON`: set the Python location in Conda archive as Python environment of executors, the Application Master and executor will all use the archive for Python environment;
__Notes:__
* `--cluster_mode`: set the cluster_mode in `init_orca_context`;
* `--remote_dir`: directory on a distributed storage for the dataset (see __[Section 3](#3-prepare-dataset)__).
* Please refer to __[Section 4](#4-prepare-custom-modules)__ for the description of extra Python dependencies.
* `--master`: the spark master, set it to "yarn".
* `--deploy-mode`: set it to "cluster" when running programs on yarn-cluster mode.
* `--conf spark.yarn.appMasterEnv.PYSPARK_PYTHON`: set the Python location in conda archive as the Python environment of the Application Master.
* `--conf spark.executorEnv.PYSPARK_PYTHON`: also set the Python location in conda archive as each executor's Python environment. The Application Master and the executors will all use the archive for the Python environment.
### 5.3 Use `spark-submit`
When the __Client Node__ (where you submit applications) is not able to install BigDL using Conda, please use `spark-submit` script instead.
When you are not able to install BigDL using conda on the __Client Node__ , please use the `spark-submit` script instead.
Please call `init_orca_context` at the very beginning of the program.
Set the cluster_mode to "spark-submit" in `init_orca_context`.
```python
from bigdl.orca import init_orca_context
# Please set cluster_mode to "spark-submit".
init_orca_context(cluster_mode="spark-submit")
sc = init_orca_context(cluster_mode="spark-submit")
```
Before submitting application, you need:
* On the __Development Node__ (which could use Conda):
1. Install and activate Conda environment (see __[Section 2.2.1](#221-install-conda)__).
2. Use Conda to install BigDL and other Python libraries (see __[Section 2.2.2](#222-use-conda-to-install-bigdl-and-other-python-libraries)__).
3. Pack the current activate Conda environment to an archive;
```bash
conda pack -o environment.tar.gz
```
4. Send the Conda archive to the __Client Node__;
```bash
scp /path/to/environment.tar.gz username@client_ip:/path/to/
```
* On the __Client Node__ (where you submit applications):
1. Setup spark environment variables `${SPARK_HOME}` and `${SPARK_VERSION}`.
```bash
export SPARK_HOME=/path/to/spark # the folder path where you extract the Spark package
export SPARK_VERSION="your spark version"
```
2. Download and unzip a BigDL assembly package from [BigDL Assembly Spark 2.4.6](https://repo1.maven.org/maven2/com/intel/analytics/bigdl/bigdl-assembly-spark_2.4.6/2.1.0/bigdl-assembly-spark_2.4.6-2.1.0-fat-jars.zip) or [BigDL Assembly Spark 3.1.2](https://repo1.maven.org/maven2/com/intel/analytics/bigdl/bigdl-assembly-spark_3.1.2/2.1.0/bigdl-assembly-spark_3.1.2-2.1.0-fat-jars.zip) (according to your Spark version), then setup `${BIGDL_HOME}` and `${BIGDL_VERSION}`.
```bash
export BIGDL_HOME=/path/to/unzipped_BigDL
export BIGDL_VERSION="download BigDL version"
```
Before submitting the application on the Client Node, you need to:
1. Prepare the conda environment on a __Development Node__ where conda is available and pack the conda environment to an archive:
```bash
conda pack -o environment.tar.gz
```
2. Send the Conda archive to the __Client Node__;
```bash
scp /path/to/environment.tar.gz username@client_ip:/path/to/
```
On the __Client Node__:
1. Download Spark and setup the environment variables `${SPARK_HOME}` and `${SPARK_VERSION}`.
```bash
export SPARK_HOME=/path/to/spark # the folder path where you extract the Spark package
export SPARK_VERSION="downloaded spark version"
```
2. Download and unzip a BigDL assembly package from [BigDL Assembly Spark 2.4.6](https://repo1.maven.org/maven2/com/intel/analytics/bigdl/bigdl-assembly-spark_2.4.6/2.1.0/bigdl-assembly-spark_2.4.6-2.1.0-fat-jars.zip) or [BigDL Assembly Spark 3.1.2](https://repo1.maven.org/maven2/com/intel/analytics/bigdl/bigdl-assembly-spark_3.1.2/2.1.0/bigdl-assembly-spark_3.1.2-2.1.0-fat-jars.zip) (according to your Spark version), then setup the environment variables `${BIGDL_HOME}` and `${BIGDL_VERSION}`.
```bash
export BIGDL_HOME=/path/to/unzipped_BigDL
export BIGDL_VERSION="downloaded BigDL version"
```
Some runtime configurations for Spark are as follows:
* `--executor-memory`: the memory for each executor.
* `--driver-memory`: the memory for the driver node.
* `--executor-cores`: the number of cores for each executor.
* `--num_executors`: the number of executors.
* `--py-files`: the extra Python dependency files to be uploaded to YARN.
* `--archives`: the conda archive to be uploaded to YARN.
#### 5.3.1 Yarn Client
Submit and run the program on `yarn-client` mode following `spark-submit` script below:
Submit and run the program for `yarn-client` mode following the `spark-submit` script below:
```bash
${SPARK_HOME}/bin/spark-submit \
--master yarn \
--deploy-mode client \
--executor-memory 10g \
--driver-memory 10g \
--executor-cores 8 \
--driver-memory 4g \
--executor-cores 4 \
--num-executors 2 \
--archives /path/to/environment.tar.gz#environment \
--properties-file ${BIGDL_HOME}/conf/spark-bigdl.conf \
@ -438,38 +338,23 @@ ${SPARK_HOME}/bin/spark-submit \
train.py --cluster_mode spark-submit --remote_dir hdfs://path/to/remote/data
```
In the `spark-submit` script:
* `--master`: the spark master, set it to `yarn`;
* `--deploy-mode`: set it to `client` when running programs on yarn-client mode;
* `--executor-memory`: set the memory for each executor;
* `--driver-memory`: set the memory for the driver node;
* `--executor-cores`: set the cores number for each executor;
* `--num_executors`: set the number of executors;
* `--archives`: upload the Conda archive to YARN;
* `--properties-file`: upload the BigDL configuration properties to YARN;
* `--py-files`: upload extra Python dependency files to YARN;
* `--conf spark.pyspark.driver.python`: set the Python location in Conda archive as driver's Python environment (find the location by running `which python`);
* `--conf spark.pyspark.python`: set the Python location in Conda archive as executors' Python environment;
* `--conf spark.driver.extraClassPath`: upload and register the BigDL jars files to the driver's classpath;
* `--conf spark.executor.extraClassPath`: upload and register the BigDL jars files to the executors' classpath;
__Notes:__
* `--cluster_mode`: set the cluster_mode in `init_orca_context`;
* `--remote_dir`: directory on a distributed storage for the dataset (see __[Section 3](#3-prepare-dataset)__).
* Please refer to __[Section 4](#4-prepare-custom-modules)__ for the description of extra Python dependencies.
* `--master`: the spark master, set it to "yarn".
* `--deploy-mode`: set it to "client" when running programs on yarn-client mode.
* `--properties-file`: the BigDL configuration properties to be uploaded to YARN.
* `--conf spark.pyspark.driver.python`: set the activate Python location on __Client Node__ as the driver's Python environment. You can find the location by running `which python`.
* `--conf spark.pyspark.python`: set the Python location in conda archive as each executor's Python environment.
* `--conf spark.driver.extraClassPath`: upload and register the BigDL jars to the driver's classpath.
* `--conf spark.executor.extraClassPath`: upload and register the BigDL jars to the executor's classpath.
#### 5.3.2 Yarn-Cluster
__Note:__
* Please register BigDL jars through `--jars` option in the `spark-submit` script.
Submit and run the program on `yarn-cluster` mode following `spark-submit` script below:
#### 5.3.2 Yarn Cluster
Submit and run the program for `yarn-cluster` mode following the `spark-submit` script below:
```bash
${SPARK_HOME}/bin/spark-submit \
--master yarn \
--deploy-mode cluster \
--executor-memory 10g \
--driver-memory 10g \
--executor-memory 4g \
--driver-memory 4g \
--executor-cores 4 \
--num-executors 2 \
--archives /path/to/environment.tar.gz#environment \
@ -480,19 +365,8 @@ ${SPARK_HOME}/bin/spark-submit \
train.py --cluster_mode spark-submit --remote_dir hdfs://path/to/remote/data
```
In the `spark-submit` script:
* `--master`: the spark master, set it to `yarn`;
* `--deploy-mode`: set it to `cluster` when running programs on yarn-cluster mode;
* `--executor-memory`: set the memory for each executor;
* `--driver-memory`: set the memory for the driver node;
* `--executor-cores`: set the cores number for each executor;
* `--num_executors`: set the number of executors;
* `--archives`: upload the Conda archive to YARN;
* `--conf spark.yarn.appMasterEnv.PYSPARK_PYTHON`: set the Python location in Conda archive as Python environment of Application Master process;
* `--conf spark.executorEnv.PYSPARK_PYTHON`: set the Python location in Conda archive as executors' Python environment, the Application Master and executor will all use the archive for Python environment;
* `--py-files`: upload extra Python dependency files to YARN;
* `--jars`: upload and register BigDL dependency jars files to YARN;
__Notes:__
* `--cluster_mode`: set the cluster_mode in `init_orca_context`;
* `--remote_dir`: directory on a distributed storage for the dataset (see __[Section 3](#3-prepare-dataset)__).
* Please refer to __[Section 4](#4-prepare-custom-modules)__ for the description of extra Python dependencies.
* `--master`: the spark master, set it to "yarn".
* `--deploy-mode`: set it to "cluster" when running programs on yarn-cluster mode.
* `--conf spark.yarn.appMasterEnv.PYSPARK_PYTHON`: set the Python location in conda archive as the Python environment of the Application Master.
* `--conf spark.executorEnv.PYSPARK_PYTHON`: also set the Python location in conda archive as each executor's Python environment. The Application Master and the executors will all use the archive for the Python environment.
* `--jars`: upload and register BigDL jars to YARN.