Add llamaindex gpu example (#10314)
* add llamaindex example * fix core dump * refine readme * add trouble shooting * refine readme --------- Co-authored-by: Ariadne <wyn2000330@126.com>
This commit is contained in:
parent
fc7f10cd12
commit
1e6f0c6f1a
3 changed files with 402 additions and 0 deletions
151
python/llm/example/GPU/LlamaIndex/README.md
Normal file
151
python/llm/example/GPU/LlamaIndex/README.md
Normal file
|
|
@ -0,0 +1,151 @@
|
|||
# LlamaIndex Examples
|
||||
|
||||
|
||||
This folder contains examples showcasing how to use [**LlamaIndex**](https://github.com/run-llama/llama_index) with `bigdl-llm`.
|
||||
> [**LlamaIndex**](https://github.com/run-llama/llama_index) is a data framework designed to improve large language models by providing tools for easier data ingestion, management, and application integration.
|
||||
|
||||
|
||||
## Retrieval-Augmented Generation (RAG) Example
|
||||
The RAG example ([rag.py](./rag.py)) is adapted from the [Official llama index RAG example](https://docs.llamaindex.ai/en/stable/examples/low_level/oss_ingestion_retrieval.html). This example builds a pipeline to ingest data (e.g. llama2 paper in pdf format) into a vector database (e.g. PostgreSQL), and then build a retrieval pipeline from that vector database.
|
||||
|
||||
|
||||
|
||||
### 1. Setting up Dependencies
|
||||
|
||||
* **Install LlamaIndex Packages**
|
||||
```bash
|
||||
pip install llama-index-readers-file llama-index-vector-stores-postgres llama-index-embeddings-huggingface
|
||||
```
|
||||
* **Install Bigdl LLM**
|
||||
|
||||
Follow the instructions in [GPU Install Guide](https://bigdl.readthedocs.io/en/latest/doc/LLM/Overview/install_gpu.html) to install bigdl-llm.
|
||||
|
||||
* **Database Setup (using PostgreSQL)**:
|
||||
* Installation:
|
||||
```bash
|
||||
sudo apt-get install postgresql-client
|
||||
sudo apt-get install postgresql
|
||||
```
|
||||
* Initialization:
|
||||
|
||||
Switch to the **postgres** user and launch **psql** console:
|
||||
```bash
|
||||
sudo su - postgres
|
||||
psql
|
||||
```
|
||||
Then, create a new user role:
|
||||
```bash
|
||||
CREATE ROLE <user> WITH LOGIN PASSWORD '<password>';
|
||||
ALTER ROLE <user> SUPERUSER;
|
||||
```
|
||||
* **Pgvector Installation**:
|
||||
Follow installation instructions on [pgvector's GitHub](https://github.com/pgvector/pgvector) and refer to the [installation notes](https://github.com/pgvector/pgvector#installation-notes) for additional help.
|
||||
|
||||
|
||||
* **Data Preparation**: Download the Llama2 paper and save it as `data/llama2.pdf`, which serves as the default source file for retrieval.
|
||||
```bash
|
||||
mkdir data
|
||||
wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"
|
||||
```
|
||||
|
||||
### 2. Configures OneAPI environment variables
|
||||
#### 2.1 Configurations for Linux
|
||||
```bash
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
```
|
||||
#### 2.2 Configurations for Windows
|
||||
```cmd
|
||||
call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat"
|
||||
```
|
||||
> Note: Please make sure you are using **CMD** (**Anaconda Prompt** if using conda) to run the command as PowerShell is not supported.
|
||||
### 3. Runtime Configurations
|
||||
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
|
||||
#### 3.1 Configurations for Linux
|
||||
<details>
|
||||
|
||||
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
|
||||
|
||||
```bash
|
||||
export USE_XETLA=OFF
|
||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>For Intel Data Center GPU Max Series</summary>
|
||||
|
||||
```bash
|
||||
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
|
||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||
export ENABLE_SDP_FUSION=1
|
||||
```
|
||||
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
|
||||
</details>
|
||||
|
||||
#### 3.2 Configurations for Windows
|
||||
<details>
|
||||
|
||||
<summary>For Intel iGPU</summary>
|
||||
|
||||
```cmd
|
||||
set SYCL_CACHE_PERSISTENT=1
|
||||
set BIGDL_LLM_XMX_DISABLED=1
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>For Intel Arc™ A300-Series or Pro A60</summary>
|
||||
|
||||
```cmd
|
||||
set SYCL_CACHE_PERSISTENT=1
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>For other Intel dGPU Series</summary>
|
||||
|
||||
There is no need to set further environment variables.
|
||||
|
||||
</details>
|
||||
|
||||
> Note: For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
|
||||
|
||||
|
||||
### 4. Running the RAG example
|
||||
|
||||
In the current directory, run the example with command:
|
||||
|
||||
```bash
|
||||
python rag.py -m <path_to_model>
|
||||
```
|
||||
**Additional Parameters for Configuration**:
|
||||
- `-m MODEL_PATH`: **Required**, path to the LLM model
|
||||
- `-e EMBEDDING_MODEL_PATH`: path to the embedding model
|
||||
- `-u USERNAME`: username in the PostgreSQL database
|
||||
- `-p PASSWORD`: password in the PostgreSQL database
|
||||
- `-q QUESTION`: question you want to ask
|
||||
- `-d DATA`: path to source data used for retrieval (in pdf format)
|
||||
|
||||
### 5. Example Output
|
||||
|
||||
A query such as **"How does Llama 2 compare to other open-source models?"** with the Llama2 paper as the data source, using the `Llama-2-7b-chat-hf` model, will produce the output like below:
|
||||
|
||||
```
|
||||
The comparison between Llama 2 and other open-source models is complex and depends on various factors such as the specific benchmarks used, the model size, and the task at hand.
|
||||
|
||||
In terms of performance on the benchmarks provided in the table, Llama 2 outperforms other open-source models on most categories. For example, on the MMLU benchmark, Llama 2 achieves a score of 22.5, while the next best open-source model, Poplar Aggregated Benchmarks, scores 17.5. Similarly, on the BBH benchmark, Llama 2 scores 20.5, while the next best open-source model scores 16.5.
|
||||
|
||||
However, it's important to note that the performance of Llama 2 can vary depending on the specific task and dataset being used. For example, on the coding benchmarks, Llama 2 performs significantly worse than other open-source models, such as PaLM (540B) and GPT-4.
|
||||
|
||||
In conclusion, while Llama 2 performs well on most benchmarks compared to other open-source models, its performance
|
||||
```
|
||||
|
||||
### 6. Trouble shooting
|
||||
#### 6.1 Core dump
|
||||
If you encounter a core dump error in your Python code, it is crucial to verify that the `import torch` statement is placed at the top of your Python file, just as what we did in `rag.py`.
|
||||
248
python/llm/example/GPU/LlamaIndex/rag.py
Normal file
248
python/llm/example/GPU/LlamaIndex/rag.py
Normal file
|
|
@ -0,0 +1,248 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import torch
|
||||
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
||||
from sqlalchemy import make_url
|
||||
from llama_index.vector_stores.postgres import PGVectorStore
|
||||
# from llama_index.llms.llama_cpp import LlamaCPP
|
||||
import psycopg2
|
||||
from pathlib import Path
|
||||
from llama_index.readers.file import PyMuPDFReader
|
||||
from llama_index.core.schema import NodeWithScore
|
||||
from typing import Optional
|
||||
from llama_index.core.query_engine import RetrieverQueryEngine
|
||||
from llama_index.core import QueryBundle
|
||||
from llama_index.core.retrievers import BaseRetriever
|
||||
from typing import Any, List
|
||||
from llama_index.core.node_parser import SentenceSplitter
|
||||
from llama_index.core.vector_stores import VectorStoreQuery
|
||||
import argparse
|
||||
|
||||
def load_vector_database(username, password):
|
||||
db_name = "example_db"
|
||||
host = "localhost"
|
||||
password = password
|
||||
port = "5432"
|
||||
user = username
|
||||
# conn = psycopg2.connect(connection_string)
|
||||
conn = psycopg2.connect(
|
||||
dbname="postgres",
|
||||
host=host,
|
||||
password=password,
|
||||
port=port,
|
||||
user=user,
|
||||
)
|
||||
conn.autocommit = True
|
||||
|
||||
with conn.cursor() as c:
|
||||
c.execute(f"DROP DATABASE IF EXISTS {db_name}")
|
||||
c.execute(f"CREATE DATABASE {db_name}")
|
||||
|
||||
vector_store = PGVectorStore.from_params(
|
||||
database=db_name,
|
||||
host=host,
|
||||
password=password,
|
||||
port=port,
|
||||
user=user,
|
||||
table_name="llama2_paper",
|
||||
embed_dim=384, # openai embedding dimension
|
||||
)
|
||||
return vector_store
|
||||
|
||||
|
||||
def load_data(data_path):
|
||||
loader = PyMuPDFReader()
|
||||
documents = loader.load(file_path=data_path)
|
||||
|
||||
|
||||
text_parser = SentenceSplitter(
|
||||
chunk_size=1024,
|
||||
# separator=" ",
|
||||
)
|
||||
text_chunks = []
|
||||
# maintain relationship with source doc index, to help inject doc metadata in (3)
|
||||
doc_idxs = []
|
||||
for doc_idx, doc in enumerate(documents):
|
||||
cur_text_chunks = text_parser.split_text(doc.text)
|
||||
text_chunks.extend(cur_text_chunks)
|
||||
doc_idxs.extend([doc_idx] * len(cur_text_chunks))
|
||||
|
||||
from llama_index.core.schema import TextNode
|
||||
nodes = []
|
||||
for idx, text_chunk in enumerate(text_chunks):
|
||||
node = TextNode(
|
||||
text=text_chunk,
|
||||
)
|
||||
src_doc = documents[doc_idxs[idx]]
|
||||
node.metadata = src_doc.metadata
|
||||
nodes.append(node)
|
||||
return nodes
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
class VectorDBRetriever(BaseRetriever):
|
||||
"""Retriever over a postgres vector store."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vector_store: PGVectorStore,
|
||||
embed_model: Any,
|
||||
query_mode: str = "default",
|
||||
similarity_top_k: int = 2,
|
||||
) -> None:
|
||||
"""Init params."""
|
||||
self._vector_store = vector_store
|
||||
self._embed_model = embed_model
|
||||
self._query_mode = query_mode
|
||||
self._similarity_top_k = similarity_top_k
|
||||
super().__init__()
|
||||
|
||||
def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
|
||||
"""Retrieve."""
|
||||
query_embedding = self._embed_model.get_query_embedding(
|
||||
query_bundle.query_str
|
||||
)
|
||||
vector_store_query = VectorStoreQuery(
|
||||
query_embedding=query_embedding,
|
||||
similarity_top_k=self._similarity_top_k,
|
||||
mode=self._query_mode,
|
||||
)
|
||||
query_result = self._vector_store.query(vector_store_query)
|
||||
|
||||
nodes_with_scores = []
|
||||
for index, node in enumerate(query_result.nodes):
|
||||
score: Optional[float] = None
|
||||
if query_result.similarities is not None:
|
||||
score = query_result.similarities[index]
|
||||
nodes_with_scores.append(NodeWithScore(node=node, score=score))
|
||||
|
||||
return nodes_with_scores
|
||||
|
||||
def completion_to_prompt(completion):
|
||||
return f"<|system|>\n</s>\n<|user|>\n{completion}</s>\n<|assistant|>\n"
|
||||
|
||||
|
||||
# Transform a list of chat messages into zephyr-specific input
|
||||
def messages_to_prompt(messages):
|
||||
prompt = ""
|
||||
for message in messages:
|
||||
if message.role == "system":
|
||||
prompt += f"<|system|>\n{message.content}</s>\n"
|
||||
elif message.role == "user":
|
||||
prompt += f"<|user|>\n{message.content}</s>\n"
|
||||
elif message.role == "assistant":
|
||||
prompt += f"<|assistant|>\n{message.content}</s>\n"
|
||||
|
||||
# ensure we start with a system prompt, insert blank if needed
|
||||
if not prompt.startswith("<|system|>\n"):
|
||||
prompt = "<|system|>\n</s>\n" + prompt
|
||||
|
||||
# add final assistant prompt
|
||||
prompt = prompt + "<|assistant|>\n"
|
||||
|
||||
return prompt
|
||||
|
||||
def main(args):
|
||||
embed_model = HuggingFaceEmbedding(model_name=args.embedding_model_path)
|
||||
|
||||
# Use custom LLM in BigDL
|
||||
from bigdl.llm.llamaindex.llms import BigdlLLM
|
||||
llm = BigdlLLM(
|
||||
model_name=args.model_path,
|
||||
tokenizer_name=args.model_path,
|
||||
context_window=512,
|
||||
max_new_tokens=32,
|
||||
generate_kwargs={"temperature": 0.7, "do_sample": False},
|
||||
model_kwargs={},
|
||||
messages_to_prompt=messages_to_prompt,
|
||||
completion_to_prompt=completion_to_prompt,
|
||||
device_map="xpu",
|
||||
)
|
||||
|
||||
vector_store = load_vector_database(username=args.user, password=args.password)
|
||||
nodes = load_data(data_path=args.data)
|
||||
for node in nodes:
|
||||
node_embedding = embed_model.get_text_embedding(
|
||||
node.get_content(metadata_mode="all")
|
||||
)
|
||||
node.embedding = node_embedding
|
||||
|
||||
vector_store.add(nodes)
|
||||
|
||||
# query_str = "Can you tell me about the key concepts for safety finetuning"
|
||||
query_str = "Explain about the training data for Llama 2"
|
||||
query_embedding = embed_model.get_query_embedding(query_str)
|
||||
# construct vector store query
|
||||
|
||||
|
||||
query_mode = "default"
|
||||
# query_mode = "sparse"
|
||||
# query_mode = "hybrid"
|
||||
|
||||
vector_store_query = VectorStoreQuery(
|
||||
query_embedding=query_embedding, similarity_top_k=2, mode=query_mode
|
||||
)
|
||||
# returns a VectorStoreQueryResult
|
||||
query_result = vector_store.query(vector_store_query)
|
||||
# print("Retrieval Results: ")
|
||||
# print(query_result.nodes[0].get_content())
|
||||
|
||||
|
||||
|
||||
nodes_with_scores = []
|
||||
for index, node in enumerate(query_result.nodes):
|
||||
score: Optional[float] = None
|
||||
if query_result.similarities is not None:
|
||||
score = query_result.similarities[index]
|
||||
nodes_with_scores.append(NodeWithScore(node=node, score=score))
|
||||
|
||||
retriever = VectorDBRetriever(
|
||||
vector_store, embed_model, query_mode="default", similarity_top_k=1
|
||||
)
|
||||
|
||||
|
||||
query_engine = RetrieverQueryEngine.from_args(retriever, llm=llm)
|
||||
|
||||
# query_str = "How does Llama 2 perform compared to other open-source models?"
|
||||
query_str = args.question
|
||||
response = query_engine.query(query_str)
|
||||
|
||||
|
||||
print("------------RESPONSE GENERATION---------------------")
|
||||
print(str(response))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description='LlamaIndex BigdlLLM Example')
|
||||
parser.add_argument('-m','--model-path', type=str, required=True,
|
||||
help='the path to transformers model')
|
||||
parser.add_argument('-q', '--question', type=str, default='How does Llama 2 perform compared to other open-source models?',
|
||||
help='qustion you want to ask.')
|
||||
parser.add_argument('-d','--data',type=str, default='./data/llama2.pdf',
|
||||
help="the data used during retrieval")
|
||||
parser.add_argument('-u', '--user', type=str, required=True,
|
||||
help="user name in the database postgres")
|
||||
parser.add_argument('-p','--password', type=str, required=True,
|
||||
help="the password of the user in the database")
|
||||
parser.add_argument('-e','--embedding-model-path',default="BAAI/bge-small-en",
|
||||
help="the path to embedding model path")
|
||||
args = parser.parse_args()
|
||||
|
||||
main(args)
|
||||
|
|
@ -239,6 +239,9 @@ class BigdlLLM(CustomLLM):
|
|||
model_name, load_in_4bit=True, **model_kwargs
|
||||
)
|
||||
|
||||
if 'xpu' in device_map:
|
||||
self._model = self._model.to(device_map)
|
||||
|
||||
# check context_window
|
||||
config_dict = self._model.config.to_dict()
|
||||
model_context_window = int(
|
||||
|
|
|
|||
Loading…
Reference in a new issue