[LLM] vLLM: Support Mixtral Model (#9670)

Add Mixtral support for BigDL vLLM.
This commit is contained in:
Xiangyu Tian 2023-12-13 14:44:47 +08:00 committed by GitHub
parent dc5b1d7e9d
commit 1c6499e880
2 changed files with 222 additions and 0 deletions

View file

@ -40,6 +40,8 @@ from transformers import PretrainedConfig
from bigdl.llm.vllm.config import ModelConfig
from bigdl.llm.vllm.model_executor.models.bigdl_llama import BigDLLlamaForCausalLM
from bigdl.llm.vllm.model_executor.models.bigdl_mixtral import BigDLMixtralForCausalLM
from bigdl.llm.utils.common import invalidInputError
# bigdl-llm Intel specified code change
@ -61,6 +63,7 @@ _MODEL_REGISTRY = {
"LlamaForCausalLM": BigDLLlamaForCausalLM,
# "LLaMAForCausalLM": LlamaForCausalLM, # For decapoda-research/llama-*
# "MistralForCausalLM": MistralForCausalLM,
"MixtralForCausalLM": BigDLMixtralForCausalLM,
# "MPTForCausalLM": MPTForCausalLM,
# "OPTForCausalLM": OPTForCausalLM,
# "QWenLMHeadModel": QWenLMHeadModel,

View file

@ -0,0 +1,219 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
from torch import nn
from transformers import AutoTokenizer, PreTrainedTokenizerBase, LlamaConfig
from typing import Optional, Tuple, List, Type, Dict
from bigdl.llm.vllm.sequence import SequenceOutputs, SequenceGroupMetadata
from bigdl.llm.vllm.model_executor.layers.bigdl_sampler import BigDLSampler
from bigdl.llm.vllm.model_executor.models.bigdl_model import BigDLModelForCausalLM
from bigdl.llm.vllm.logger import init_logger
import math
import time
from bigdl.llm.vllm.model_executor.input_metadata import InputMetadata
from transformers.generation.logits_process import (
LogitsProcessorList,
RepetitionPenaltyLogitsProcessor,
TemperatureLogitsWarper,
TopKLogitsWarper,
TopPLogitsWarper,
)
logger = init_logger(__name__)
def _pad_to_max(x: List[int], max_len: int, padding_id: int = 0) -> List[int]:
return [padding_id] * (max_len - len(x)) + x
def _get_attention_mask_for_prompts(
input_ids: List[List[int]], max_prompt_len: int
) -> List[List[int]]:
attention_mask = [
[0] * (max_prompt_len - len(prompt)) + [1] * len(prompt) for prompt in input_ids
]
return attention_mask
class BigDLMixtralForCausalLM(BigDLModelForCausalLM):
def __init__(
self,
config,
device: Optional[str] = None,
max_model_len: Optional[int] = None,
):
super().__init__(config, device, max_model_len)
self.config = config
# TODO(gc): later change this to a switch?
if True:
from bigdl.llm.transformers import AutoModelForCausalLM
from bigdl.llm import optimize_model
# low_bit = 'sym_int4'
if device == 'cpu':
model = AutoModelForCausalLM.from_pretrained(
config._name_or_path,
low_cpu_mem_usage=True,
trust_remote_code=True,
use_cache=True,
)
self.model = optimize_model(model)
self.sampler = BigDLSampler(config.vocab_size, device)
elif device == 'xpu':
try:
import intel_extension_for_pytorch as ipex
except ImportError:
print("Intel Extension for PyTorch is not installed, \
but is required for xpu inference.")
low_bit = 'sym_int4'
model = AutoModelForCausalLM.from_pretrained(
config._name_or_path,
load_in_low_bit=low_bit,
trust_remote_code=True,
optimize_model=True,
use_cache=True,
)
self.model = model.to('xpu')
self.sampler = BigDLSampler(config.vocab_size, device).to('xpu')
if device is None:
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu")
else:
self.device = torch.device(device)
self.dtype = self.model.dtype
self.last_seq_ids = []
self.tmp_kv_cache = None
if config.pad_token_id is None:
self.pad_token_id = config.eos_token_id
else:
self.pad_token_id = config.pad_token_id
self.max_seq_limit = max_model_len
def forward(
self,
seq_group_meta_data_lists: List[SequenceGroupMetadata],
# kv_cache in the format [[dict() for _ in range(2)] for _ in range(32)]
kv_cache: Optional[List[List[Dict]]] = None,
input_metadata: Optional[InputMetadata] = None,
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
num_layers = self.model.config.num_hidden_layers
# One for key, one for value
decoder_kv_size = 2
bigdl_input_ids = []
bigdl_position_ids = []
bigdl_attention_mask = []
cur_seq_ids = []
max_prompt_len = 0
# 0. Verify is_prompt or is_decoding
is_decoding_stage = not seq_group_meta_data_lists[0].is_prompt
# 1. Assemble bigdl_input_ids
for seq_group_meta_data in seq_group_meta_data_lists:
# req_id = seq_group_meta_data.request_id
# is_decoding_stage = is_decoding_stage and (not seq_group_meta_data.is_prompt)
seq_ids = list(seq_group_meta_data.seq_data.keys())
seq_id = seq_ids[0]
cur_seq_ids.append(seq_id)
seq_data = seq_group_meta_data.seq_data[seq_id]
cur_seq_input_ids = seq_data.get_token_ids()
# context_len = seq_data.get_len()
if seq_group_meta_data.is_prompt:
bigdl_input_ids.append(cur_seq_input_ids)
max_prompt_len = max(max_prompt_len, seq_data.get_len())
else:
bigdl_input_ids.append([cur_seq_input_ids[-1]])
# 1. Assemble bigdl_input_ids end
if is_decoding_stage:
bigdl_kv_cache = self.prepare_kv_cache(cur_seq_ids, seq_group_meta_data_lists,
kv_cache, num_layers, decoder_kv_size)
else:
bigdl_attention_mask = _get_attention_mask_for_prompts(bigdl_input_ids, max_prompt_len)
bigdl_input_ids = [
_pad_to_max(input_ids, max_prompt_len, self.pad_token_id)
for input_ids in bigdl_input_ids
]
if is_decoding_stage:
cur_seq_len = bigdl_kv_cache[0][0].size(2)
for seq_group_meta_data in seq_group_meta_data_lists:
seq_ids = list(seq_group_meta_data.seq_data.keys())
seq_id = seq_ids[0]
seq_data = seq_group_meta_data.seq_data[seq_id]
cur_pos = seq_data.get_len()
# bigdl_position_ids.append([cur_pos - 1])
cur_attention_mask = [0] * (cur_seq_len - cur_pos + 1) + [1] * (cur_pos)
bigdl_attention_mask.append(cur_attention_mask)
bigdl_input_ids = torch.tensor(bigdl_input_ids, device=self.device)
if is_decoding_stage:
# bigdl_position_ids = torch.tensor(bigdl_position_ids, device=self.device)
bigdl_attention_mask = torch.tensor(bigdl_attention_mask, device=self.device)
kwargs = {
"input_ids": bigdl_input_ids,
# "position_ids": bigdl_position_ids,
"attention_mask": bigdl_attention_mask,
"past_key_values": bigdl_kv_cache,
"use_cache": True,
# "return_dict": True,
}
else:
kwargs = {
"input_ids": bigdl_input_ids,
"attention_mask": torch.tensor(bigdl_attention_mask, device=self.device),
# "position_ids": bigdl_position_ids,
"past_key_values": None,
"use_cache": True,
# "return_dict": True,
}
if self.last_kv_cache:
self.last_kv_cache = None
# pdb.set_trace()
if self.device.type == 'xpu':
torch.xpu.empty_cache()
st_timestamp = time.perf_counter()
outputs = self.model.forward(**kwargs)
# tmp = torch.xpu.memory_stats()
# logger.info(f"0: {tmp['allocated_bytes.all.current']}")
# self.last_seq_ids = cur_seq_ids[:]
# self.last_kv_cache = outputs.past_key_values
self._set_last_seq_ids(cur_seq_ids[:])
self._set_last_kv_cache(outputs.past_key_values)
# pdb.set_trace()
logits = outputs.logits[:, -1, :]
bigdl_output = self.sampler(logits, input_metadata, st_timestamp)
# tmp = torch.xpu.memory_stats()
# logger.info(f"before: {tmp['allocated_bytes.all.current']}")
self.update_kv_cache(cur_seq_ids,
kv_cache, num_layers, decoder_kv_size)
# tmp = torch.xpu.memory_stats()
# logger.info(f"after: {tmp['allocated_bytes.all.current']}")
return bigdl_output