diff --git a/docs/readthedocs/source/doc/LLM/Quickstart/llama_cpp_quickstart.md b/docs/readthedocs/source/doc/LLM/Quickstart/llama_cpp_quickstart.md
index 4736b6dc..e3e9840b 100644
--- a/docs/readthedocs/source/doc/LLM/Quickstart/llama_cpp_quickstart.md
+++ b/docs/readthedocs/source/doc/LLM/Quickstart/llama_cpp_quickstart.md
@@ -15,7 +15,7 @@ IPEX-LLM's support for `llama.cpp` now is avaliable for Linux system and Windows
#### Linux
For Linux system, we recommend Ubuntu 20.04 or later (Ubuntu 22.04 is preferred).
-Visit the [Install IPEX-LLM on Linux with Intel GPU](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/install_linux_gpu.html), follow [Install Intel GPU Driver](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/install_linux_gpu.html#install-intel-gpu-driver) and [Install oneAPI](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/install_linux_gpu.html#install-oneapi) to install GPU driver and [Intel® oneAPI Base Toolkit 2024.0](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit-download.html).
+Visit the [Install IPEX-LLM on Linux with Intel GPU](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/install_linux_gpu.html), follow [Install Intel GPU Driver](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/install_linux_gpu.html#install-intel-gpu-driver) and [Install oneAPI](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/install_linux_gpu.html#install-oneapi) to install GPU driver and Intel® oneAPI Base Toolkit 2024.0.
#### Windows
Visit the [Install IPEX-LLM on Windows with Intel GPU Guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/install_windows_gpu.html), and follow [Install Prerequisites](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/install_windows_gpu.html#install-prerequisites) to install [Visual Studio 2022](https://visualstudio.microsoft.com/downloads/) Community Edition, latest [GPU driver](https://www.intel.com/content/www/us/en/download/785597/intel-arc-iris-xe-graphics-windows.html) and Intel® oneAPI Base Toolkit 2024.0.
diff --git a/docs/readthedocs/source/doc/LLM/Quickstart/ollama_quickstart.md b/docs/readthedocs/source/doc/LLM/Quickstart/ollama_quickstart.md
index 998dd2d8..f2bdbca2 100644
--- a/docs/readthedocs/source/doc/LLM/Quickstart/ollama_quickstart.md
+++ b/docs/readthedocs/source/doc/LLM/Quickstart/ollama_quickstart.md
@@ -1,51 +1,81 @@
-# Run Ollama on Linux with Intel GPU
+# Run Ollama with IPEX-LLM on Intel GPU
[ollama/ollama](https://github.com/ollama/ollama) is popular framework designed to build and run language models on a local machine; you can now use the C++ interface of [`ipex-llm`](https://github.com/intel-analytics/ipex-llm) as an accelerated backend for `ollama` running on Intel **GPU** *(e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max)*.
-```eval_rst
-.. note::
- Only Linux is currently supported.
-```
-
See the demo of running LLaMA2-7B on Intel Arc GPU below.
## Quickstart
-### 1 Install IPEX-LLM with Ollama Binaries
+### 1 Install IPEX-LLM for Ollama
-Visit [Run llama.cpp with IPEX-LLM on Intel GPU Guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html), and follow the instructions in section [Install Prerequisits on Linux](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html#linux) , and section [Install IPEX-LLM cpp](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html#install-ipex-llm-for-llama-cpp) to install the IPEX-LLM with Ollama binaries.
+IPEX-LLM's support for `ollama` now is avaliable for Linux system and Windows system.
-**After the installation, you should have created a conda environment, named `llm-cpp` for instance, for running `llama.cpp` commands with IPEX-LLM.**
+Visit [Run llama.cpp with IPEX-LLM on Intel GPU Guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html), and follow the instructions in section [Prerequisites](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html#prerequisites) to setup and section [Install IPEX-LLM cpp](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html#install-ipex-llm-for-llama-cpp) to install the IPEX-LLM with Ollama binaries.
+
+**After the installation, you should have created a conda environment, named `llm-cpp` for instance, for running `ollama` commands with IPEX-LLM.**
### 2. Initialize Ollama
Activate the `llm-cpp` conda environment and initialize Ollama by executing the commands below. A symbolic link to `ollama` will appear in your current directory.
-```bash
-conda activate llm-cpp
-init-ollama
-```
+```eval_rst
+.. tabs::
+ .. tab:: Linux
+
+ .. code-block:: bash
+
+ conda activate llm-cpp
+ init-ollama
+
+ .. tab:: Windows
+
+ Please run the following command with **administrator privilege in Anaconda Prompt**.
+
+ .. code-block:: bash
+
+ conda activate llm-cpp
+ init-ollama.bat
+
+```
+
+**Now you can use this executable file by standard ollama's usage.**
### 3 Run Ollama Serve
Launch the Ollama service:
-```bash
-conda activate llm-cpp
+```eval_rst
+.. tabs::
+ .. tab:: Linux
-export no_proxy=localhost,127.0.0.1
-export ZES_ENABLE_SYSMAN=1
-source /opt/intel/oneapi/setvars.sh
+ .. code-block:: bash
+
+ export no_proxy=localhost,127.0.0.1
+ export ZES_ENABLE_SYSMAN=1
+ source /opt/intel/oneapi/setvars.sh
+
+ ./ollama serve
+
+ .. tab:: Windows
+
+ Please run the following command in Anaconda Prompt.
+
+ .. code-block:: bash
+
+ set no_proxy=localhost,127.0.0.1
+ set ZES_ENABLE_SYSMAN=1
+ call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat"
+
+ ollama.exe serve
-./ollama serve
```
```eval_rst
.. note::
-
+
To allow the service to accept connections from all IP addresses, use `OLLAMA_HOST=0.0.0.0 ./ollama serve` instead of just `./ollama serve`.
```
@@ -56,55 +86,101 @@ The console will display messages similar to the following:
-
### 4 Pull Model
-Keep the Ollama service on and open another terminal and run `./ollama pull ` to automatically pull a model. e.g. `dolphin-phi:latest`:
+Keep the Ollama service on and open another terminal and run `./ollama pull ` in Linux (`ollama.exe pull ` in Windows) to automatically pull a model. e.g. `dolphin-phi:latest`:
-
### 5 Using Ollama
#### Using Curl
-Using `curl` is the easiest way to verify the API service and model. Execute the following commands in a terminal. **Replace the with your pulled model**, e.g. `dolphin-phi`.
+Using `curl` is the easiest way to verify the API service and model. Execute the following commands in a terminal. **Replace the with your pulled
+model**, e.g. `dolphin-phi`.
+
+```eval_rst
+.. tabs::
+ .. tab:: Linux
+
+ .. code-block:: bash
+
+ curl http://localhost:11434/api/generate -d '
+ {
+ "model": "",
+ "prompt": "Why is the sky blue?",
+ "stream": false,
+ "options":{"num_gpu": 999}
+ }'
+
+ .. tab:: Windows
+
+ Please run the following command in Anaconda Prompt.
+
+ .. code-block:: bash
+
+ curl http://localhost:11434/api/generate -d "
+ {
+ \"model\": \"\",
+ \"prompt\": \"Why is the sky blue?\",
+ \"stream\": false,
+ \"options\":{\"num_gpu\": 999}
+ }"
-```shell
-curl http://localhost:11434/api/generate -d '
-{
- "model": "",
- "prompt": "Why is the sky blue?",
- "stream": false
-}'
```
-An example output of using model `doplphin-phi` looks like the following:
-
-
-
+```eval_rst
+.. note::
+ Please don't forget to set ``"options":{"num_gpu": 999}`` to make sure all layers of your model are running on Intel GPU, otherwise, some layers may run on CPU.
+```
-#### Using Ollama Run
-
-You can also use `ollama run` to run the model directly on console. **Replace the with your pulled model**, e.g. `dolphin-phi`. This command will seamlessly download, load the model, and enable you to interact with it through a streaming conversation."
+#### Using Ollama Run GGUF models
+Ollama supports importing GGUF models in the Modelfile, for example, suppose you have downloaded a `mistral-7b-instruct-v0.1.Q4_K_M.gguf` from [Mistral-7B-Instruct-v0.1-GGUF](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF/tree/main), then you can create a file named `Modelfile`:
```bash
-conda activate llm-cpp
-
-export no_proxy=localhost,127.0.0.1
-export ZES_ENABLE_SYSMAN=1
-source /opt/intel/oneapi/setvars.sh
-
-./ollama run
+FROM ./mistral-7b-instruct-v0.1.Q4_K_M.gguf
+TEMPLATE [INST] {{ .Prompt }} [/INST]
+PARAMETER num_gpu 999
+PARAMETER num_predict 64
```
-An example process of interacting with model with `ollama run` looks like the following:
+```eval_rst
+.. note::
-
- 
+ Please don't forget to set ``PARAMETER num_gpu 999`` to make sure all layers of your model are running on Intel GPU, otherwise, some layers may run on CPU.
+```
+
+Then you can create the model in Ollama by `ollama create example -f Modelfile` and use `ollama run` to run the model directly on console.
+
+```eval_rst
+.. tabs::
+ .. tab:: Linux
+
+ .. code-block:: bash
+
+ export no_proxy=localhost,127.0.0.1
+ ./ollama create example -f Modelfile
+ ./ollama run example
+
+ .. tab:: Windows
+
+ Please run the following command in Anaconda Prompt.
+
+ .. code-block:: bash
+
+ set no_proxy=localhost,127.0.0.1
+ ollama.exe create example -f Modelfile
+ ollama.exe run example
+
+```
+
+An example process of interacting with model with `ollama run example` looks like the following:
+
+
+