LLM: support int4 fp16 chatglm2-6b 8k input. (#10648)
This commit is contained in:
		
							parent
							
								
									ab87b6ab21
								
							
						
					
					
						commit
						1a9b8204a4
					
				
					 1 changed files with 17 additions and 4 deletions
				
			
		| 
						 | 
				
			
			@ -512,10 +512,23 @@ def core_attn_forward_8eb45c(query_layer, key_layer, value_layer, attention_mask
 | 
			
		|||
        query_layer = query_layer.permute(1, 2, 0, 3)
 | 
			
		||||
        L, S = query_layer.shape[2], key_layer.shape[2]
 | 
			
		||||
        if attention_mask is None and L == S:
 | 
			
		||||
            context_layer = F.scaled_dot_product_attention(query_layer.to(key_layer.dtype),
 | 
			
		||||
                                                           key_layer,
 | 
			
		||||
                                                           value_layer,
 | 
			
		||||
                                                           is_causal=True).to(key_layer.dtype)
 | 
			
		||||
            # split tensor for memory block limitation
 | 
			
		||||
            # support fp16 and set input length threshold at 5000 for now
 | 
			
		||||
            if query_layer.dtype == torch.float16 and L >= 5000:
 | 
			
		||||
                # split first dim 32 -> 8
 | 
			
		||||
                query_sp = torch.split(query_layer.to(key_layer.dtype), 8, dim=1)
 | 
			
		||||
                key_sp = torch.split(key_layer, 8, dim=1)
 | 
			
		||||
                value_sp = torch.split(value_layer, 8, dim=1)
 | 
			
		||||
                results = []
 | 
			
		||||
                for q, k, v in zip(query_sp, key_sp, value_sp):
 | 
			
		||||
                    result = F.scaled_dot_product_attention(q, k, v, is_causal=True).to(k.dtype)
 | 
			
		||||
                    results.append(result)
 | 
			
		||||
                context_layer = torch.cat(results, dim=1)
 | 
			
		||||
            else:
 | 
			
		||||
                context_layer = F.scaled_dot_product_attention(query_layer.to(key_layer.dtype),
 | 
			
		||||
                                                               key_layer,
 | 
			
		||||
                                                               value_layer,
 | 
			
		||||
                                                               is_causal=True).to(key_layer.dtype)
 | 
			
		||||
        else:
 | 
			
		||||
            if use_esimd_sdp(query_layer.shape[2], key_layer.shape[2],
 | 
			
		||||
                             query_layer.shape[-1], query_layer):
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue