[LLM] support ipex arc int4 & add basic llama2 example (#8700)
* first support of xpu * make it works on gpu update setup update add GPU llama2 examples add use_optimize flag to disbale optimize for gpu fix style update gpu exmaple readme fix * update example, and update env * fix setup to add cpp files * replace jit with aot to avoid data leak * rename to bigdl-core-xe * update installation in example readme
This commit is contained in:
parent
d03218674a
commit
1a7b698a83
8 changed files with 232 additions and 19 deletions
|
|
@ -0,0 +1,15 @@
|
|||
# BigDL-LLM Transformers INT4 Optimization for Large Language Model on Intel® Arc™ A-Series Graphics
|
||||
You can use BigDL-LLM to run almost every Huggingface Transformer models with INT4 optimizations on your laptops with Intel® Arc™ A-Series Graphics. This directory contains example scripts to help you quickly get started using BigDL-LLM to run some popular open-source models in the community. Each model has its own dedicated folder, where you can find detailed instructions on how to install and run it.
|
||||
|
||||
## Recommended Requirements
|
||||
To apply Intel® Arc™ A-Series Graphics acceleration, there’re several steps for tools installation and environment preparation.
|
||||
Step 1, only Linux system is supported now, Ubuntu 22.04 is prefered.
|
||||
Step 2, please refer to our [drive installation](https://dgpu-docs.intel.com/installation-guides/index.html#intel-arc-gpus) for general purpose GPU capabilities.
|
||||
Step 3, you also need to download and install [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit-download.html). OneMKL and DPC++ compiler are needed, others are optional.
|
||||
|
||||
## Best Known Configuration on Linux
|
||||
For better performance, it is recommended to set environment variables on Linux:
|
||||
```bash
|
||||
export USE_XETLA=OFF
|
||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||
```
|
||||
|
|
@ -0,0 +1,78 @@
|
|||
# Llama2
|
||||
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Llama2 models on any Intel® Arc™ A-Series Graphics. For illustration purposes, we utilize the [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) and [meta-llama/Llama-2-13b-chat-hf](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf) as reference Llama2 models.
|
||||
|
||||
## 0. Requirements
|
||||
To run these examples with BigDL-LLM on Intel® Arc™ A-Series Graphics, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||
|
||||
## Example: Predict Tokens using `generate()` API
|
||||
In the example [generate.py](./generate.py), we show a basic use case for a Llama2 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel® Arc™ A-Series Graphics.
|
||||
### 1. Install
|
||||
We suggest using conda to manage environment:
|
||||
```bash
|
||||
conda create -n llm python=3.9
|
||||
conda activate llm
|
||||
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
|
||||
# you can install specific ipex/torch version for your need
|
||||
pip install bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
|
||||
# download wheel from sourceforge(https://sourceforge.net/projects/analytics-zoo/files/bigdl-llm/bigdl_core_xe-0.0.0-cp39-cp39-linux_x86_64.whl/download), then install it
|
||||
pip install bigdl_core_xe-0.0.0-cp39-cp39-linux_x86_64.whl
|
||||
```
|
||||
### 2. Configures OneAPI environment variables
|
||||
```bash
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
```
|
||||
|
||||
### 3. Run
|
||||
|
||||
For optimal performance on Arc, it is recommended to set several environment variables.
|
||||
|
||||
```bash
|
||||
export USE_XETLA=OFF
|
||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||
```
|
||||
|
||||
```
|
||||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
|
||||
```
|
||||
|
||||
Arguments info:
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama2 model (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'meta-llama/Llama-2-7b-chat-hf'`.
|
||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
|
||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||
|
||||
#### Sample Output
|
||||
#### [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
|
||||
```log
|
||||
Inference time: xxxx s
|
||||
-------------------- Prompt --------------------
|
||||
### HUMAN:
|
||||
What is AI?
|
||||
|
||||
### RESPONSE:
|
||||
|
||||
-------------------- Output --------------------
|
||||
### HUMAN:
|
||||
What is AI?
|
||||
|
||||
### RESPONSE:
|
||||
|
||||
AI is a term used to describe the development of computer systems that can perform tasks that typically require human intelligence, such as understanding natural language, recognizing images
|
||||
```
|
||||
|
||||
#### [meta-llama/Llama-2-13b-chat-hf](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf)
|
||||
```log
|
||||
Inference time: xxxx s
|
||||
-------------------- Prompt --------------------
|
||||
### HUMAN:
|
||||
What is AI?
|
||||
|
||||
### RESPONSE:
|
||||
|
||||
-------------------- Output --------------------
|
||||
### HUMAN:
|
||||
What is AI?
|
||||
|
||||
### RESPONSE:
|
||||
|
||||
AI, or artificial intelligence, refers to the ability of machines to perform tasks that would typically require human intelligence, such as learning, problem-solving,
|
||||
```
|
||||
|
|
@ -0,0 +1,76 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import torch
|
||||
import time
|
||||
import argparse
|
||||
|
||||
from bigdl.llm.transformers import AutoModelForCausalLM
|
||||
from transformers import LlamaTokenizer
|
||||
import intel_extension_for_pytorch as ipex
|
||||
|
||||
# you could tune the prompt based on your own model,
|
||||
# here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style
|
||||
LLAMA2_PROMPT_FORMAT = """### HUMAN:
|
||||
{prompt}
|
||||
|
||||
### RESPONSE:
|
||||
"""
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
|
||||
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--prompt', type=str, default="What is AI?",
|
||||
help='Prompt to infer')
|
||||
parser.add_argument('--n-predict', type=int, default=32,
|
||||
help='Max tokens to predict')
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
|
||||
# Load model in 4 bit,
|
||||
# which convert the relevant layers in the model into INT4 format
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path,
|
||||
load_in_4bit=True,
|
||||
optimize_model=False,
|
||||
trust_remote_code=True)
|
||||
model = model.half().to('xpu')
|
||||
|
||||
# Load tokenizer
|
||||
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
# Generate predicted tokens
|
||||
with torch.inference_mode():
|
||||
prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt)
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
|
||||
st = time.time()
|
||||
# if your selected model is capable of utilizing previous key/value attentions
|
||||
# to enhance decoding speed, but has `"use_cache": false` in its model config,
|
||||
# it is important to set `use_cache=True` explicitly in the `generate` function
|
||||
# to obtain optimal performance with BigDL-LLM INT4 optimizations
|
||||
output = model.generate(input_ids,
|
||||
max_new_tokens=args.n_predict)
|
||||
torch.xpu.synchronize()
|
||||
end = time.time()
|
||||
output = output.cpu()
|
||||
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||
print(f'Inference time: {end-st} s')
|
||||
print('-'*20, 'Prompt', '-'*20)
|
||||
print(prompt)
|
||||
print('-'*20, 'Output', '-'*20)
|
||||
print(output_str)
|
||||
|
|
@ -34,6 +34,7 @@ import urllib.request
|
|||
import requests
|
||||
import re
|
||||
import glob
|
||||
import copy
|
||||
|
||||
from setuptools import setup
|
||||
|
||||
|
|
@ -247,6 +248,13 @@ def setup_package():
|
|||
all_requires = ['py-cpuinfo']
|
||||
all_requires += CONVERT_DEP
|
||||
|
||||
# install with -f https://developer.intel.com/ipex-whl-stable-xpu
|
||||
xpu_requires = copy.deepcopy(all_requires)
|
||||
xpu_requires.remove('torch')
|
||||
xpu_requires += ["torch==2.0.1a0",
|
||||
"torchvision==0.15.2a0",
|
||||
"intel_extension_for_pytorch==2.0.110+xpu;platform_system=='Linux'"]
|
||||
|
||||
metadata = dict(
|
||||
name='bigdl-llm',
|
||||
version=VERSION,
|
||||
|
|
@ -267,7 +275,8 @@ def setup_package():
|
|||
'llm-convert=bigdl.llm.convert_model:main'
|
||||
]
|
||||
},
|
||||
extras_require={"all": all_requires},
|
||||
extras_require={"all": all_requires,
|
||||
"xpu": xpu_requires},
|
||||
classifiers=[
|
||||
'License :: OSI Approved :: Apache Software License',
|
||||
'Programming Language :: Python :: 3',
|
||||
|
|
|
|||
|
|
@ -73,7 +73,6 @@ def _replace_with_quant_linear(model, qtype, modules_to_not_convert=None,
|
|||
# Check if the current key is not in the `modules_to_not_convert`
|
||||
if not any(key in ".".join(current_key_name) for key in modules_to_not_convert):
|
||||
with init_empty_weights():
|
||||
|
||||
new_linear = LinearQuant(
|
||||
module.in_features,
|
||||
module.out_features,
|
||||
|
|
@ -112,7 +111,7 @@ def _replace_with_quant_linear(model, qtype, modules_to_not_convert=None,
|
|||
return model, has_been_replaced
|
||||
|
||||
|
||||
def ggml_convert_quant(model, qtype, convert_shape_only=False):
|
||||
def ggml_convert_quant(model, qtype, optimize_model=True, convert_shape_only=False):
|
||||
modules_to_not_convert = [] # ["lm_head"]
|
||||
model, has_been_replaced = _replace_with_quant_linear(
|
||||
model, qtype, modules_to_not_convert, None, convert_shape_only=convert_shape_only
|
||||
|
|
@ -127,7 +126,8 @@ def ggml_convert_quant(model, qtype, convert_shape_only=False):
|
|||
else:
|
||||
model.to(torch.float32)
|
||||
|
||||
model = optimize(model)
|
||||
if optimize_model:
|
||||
model = optimize(model)
|
||||
return model
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -43,7 +43,7 @@
|
|||
|
||||
from typing import Optional, TypeVar, Union, overload
|
||||
from bigdl.llm.utils.common import invalidInputError
|
||||
|
||||
import os
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import Tensor, device, dtype, nn
|
||||
|
|
@ -52,8 +52,6 @@ T = TypeVar("T", bound="torch.nn.Module")
|
|||
|
||||
import bigdl.llm.ggml.model.llama.llama_cpp as ggml
|
||||
from bigdl.llm.utils.isa_checker import is_server
|
||||
|
||||
import torch
|
||||
import ctypes
|
||||
from bigdl.llm.ggml.quantize import ggml_tensor_qtype
|
||||
IS_SERVER = is_server()
|
||||
|
|
@ -152,6 +150,17 @@ class ParamsQuant(torch.nn.Parameter):
|
|||
|
||||
if (device is not None and device.type == "cpu" and self.data.device.type == "cpu"):
|
||||
return self.quantize(device)
|
||||
elif (device is not None and device.type == "xpu" and self.data.device.type == "cpu"):
|
||||
# enter xpu logic, compile linear_int4 extension at first time
|
||||
q_tensor = self.quantize(device) # tensor is cpu now
|
||||
new_param = ParamsQuant(super().to(device=device,
|
||||
dtype=dtype,
|
||||
non_blocking=non_blocking),
|
||||
requires_grad=self.requires_grad,
|
||||
quantized=self.quantized,
|
||||
_shape=self._shape,
|
||||
qtype=self.qtype)
|
||||
return new_param
|
||||
else:
|
||||
new_param = ParamsQuant(super().to(device=device,
|
||||
dtype=dtype,
|
||||
|
|
@ -224,15 +233,34 @@ class LinearQuant(nn.Linear):
|
|||
|
||||
x0 = self.weight.data
|
||||
|
||||
# todo may need to set a different number on different platforms
|
||||
if IS_SERVER and self.qtype == SYM_INT4 and x_2d.shape[0] >= TORCH_LINEAR_THRESHOLD:
|
||||
x0_fp32 = ggml_int4_convert_fp32(x0, self.weight_shape, self.weight_length)
|
||||
result = F.linear(x, x0_fp32, self.bias)
|
||||
else:
|
||||
result = ggml_matmul_src1_x_src0_t(x0, x_2d, self.weight_shape, self.qtype)
|
||||
if x0.device.type == "xpu":
|
||||
# GPU logic
|
||||
try:
|
||||
import intel_extension_for_pytorch
|
||||
import linear_q4_0
|
||||
except ModuleNotFoundError:
|
||||
invalidInputError(False,
|
||||
"Please `pip install bigdl_core_xe` first.")
|
||||
|
||||
if x_2d.is_contiguous() is False:
|
||||
x_2d = x_2d.contiguous()
|
||||
# input format of linear_q4.forward is 1: input, 2: weight
|
||||
result = linear_q4_0.forward(x_2d, x0)
|
||||
new_shape = x_shape[:-1] + (self.out_len,)
|
||||
result = result.view(new_shape)
|
||||
if self.bias is not None:
|
||||
result += self.bias
|
||||
else:
|
||||
# CPU logic
|
||||
# todo may need to set a different number on different platforms
|
||||
if IS_SERVER and self.qtype == SYM_INT4 and x_2d.shape[0] >= TORCH_LINEAR_THRESHOLD:
|
||||
x0_fp32 = ggml_int4_convert_fp32(x0, self.weight_shape, self.weight_length)
|
||||
result = F.linear(x, x0_fp32, self.bias)
|
||||
else:
|
||||
result = ggml_matmul_src1_x_src0_t(x0, x_2d, self.weight_shape, self.qtype)
|
||||
new_shape = x_shape[:-1] + (self.out_len,)
|
||||
result = result.view(new_shape)
|
||||
if self.bias is not None:
|
||||
result += self.bias
|
||||
|
||||
return result.to(x.dtype)
|
||||
|
|
|
|||
|
|
@ -68,6 +68,7 @@ class _BaseAutoModelClass:
|
|||
# we can convert the model to quantized later.
|
||||
load_in_4bit = kwargs.pop("load_in_4bit", False)
|
||||
load_in_low_bit = kwargs.pop("load_in_low_bit", None)
|
||||
optimize_model = kwargs.pop("optimize_model", True)
|
||||
|
||||
if load_in_4bit or load_in_low_bit:
|
||||
# load int x-bit
|
||||
|
|
@ -78,7 +79,7 @@ class _BaseAutoModelClass:
|
|||
if "pretraining_tp" in config_dict:
|
||||
kwargs["pretraining_tp"] = 1
|
||||
q_k = load_in_low_bit if load_in_low_bit else "sym_int4"
|
||||
model = cls.load_convert(q_k, *args, **kwargs)
|
||||
model = cls.load_convert(q_k, optimize_model, *args, **kwargs)
|
||||
else:
|
||||
# load default
|
||||
model = cls.HF_Model.from_pretrained(*args, **kwargs)
|
||||
|
|
@ -86,7 +87,7 @@ class _BaseAutoModelClass:
|
|||
return model
|
||||
|
||||
@classmethod
|
||||
def load_convert(cls, q_k, *args, **kwargs):
|
||||
def load_convert(cls, q_k, optimize_model, *args, **kwargs):
|
||||
from .convert import ggml_convert_quant
|
||||
invalidInputError(q_k in ggml_tensor_qtype,
|
||||
f"Unknown load_in_low_bit value: {q_k}, expected:"
|
||||
|
|
@ -94,7 +95,7 @@ class _BaseAutoModelClass:
|
|||
qtype = ggml_tensor_qtype[q_k]
|
||||
model = cls.HF_Model.from_pretrained(*args, **kwargs)
|
||||
model = model.to("cpu")
|
||||
model = ggml_convert_quant(model, qtype)
|
||||
model = ggml_convert_quant(model, qtype, optimize_model)
|
||||
model.config.update({"bigdl_transformers_low_bit": q_k})
|
||||
|
||||
# add save_low_bit to pretrained model dynamically
|
||||
|
|
@ -128,6 +129,9 @@ class _BaseAutoModelClass:
|
|||
# set default torch_dtype='auto'
|
||||
kwargs["torch_dtype"] = kwargs.get("torch_dtype", 'auto')
|
||||
|
||||
# set default optimize_model=True
|
||||
optimize_model = kwargs.pop("optimize_model", True)
|
||||
|
||||
qtype = ggml_tensor_qtype[bigdl_transformers_low_bit]
|
||||
# Note that the int4 linear layers cannot currently
|
||||
# be recorded in huggingface Pretrained Model or AutoConfig,
|
||||
|
|
@ -154,7 +158,7 @@ class _BaseAutoModelClass:
|
|||
|
||||
# We forcefully modify the model's definition
|
||||
# and the tensor shape of int4 weights without quantization.
|
||||
model = ggml_convert_quant(model, qtype, convert_shape_only=True)
|
||||
model = ggml_convert_quant(model, qtype, optimize_model, convert_shape_only=True)
|
||||
# Load the quantized model at last.
|
||||
resolved_archive_file, is_sharded = extract_local_archive_file(
|
||||
pretrained_model_name_or_path,
|
||||
|
|
|
|||
|
|
@ -83,6 +83,7 @@ def llama_attention_forward_4_31(
|
|||
use_cache: bool = False,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
device = hidden_states.device
|
||||
|
||||
if self.pretraining_tp > 1:
|
||||
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.pretraining_tp
|
||||
|
|
@ -153,8 +154,10 @@ def llama_attention_forward_4_31(
|
|||
past_key_value = (key_states, value_states) if use_cache else None
|
||||
|
||||
# repeat k/v heads if n_kv_heads < n_heads
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups).to(device,
|
||||
dtype=hidden_states.dtype)
|
||||
value_states = repeat_kv(value_states, self.num_key_value_groups).to(device,
|
||||
dtype=hidden_states.dtype)
|
||||
|
||||
attn_weights = torch.matmul(query_states,
|
||||
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||
|
|
|
|||
Loading…
Reference in a new issue