[NPU] support asym_int4 for minicpm (#12567)

This commit is contained in:
Zijie Li 2024-12-17 21:55:35 -05:00 committed by GitHub
parent 6e801bc4e1
commit 1a2ab12876
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 146 additions and 40 deletions

View file

@ -81,7 +81,8 @@ class LowBitMinicpmMultiDecoderlayer(LLMBaseNNFactory):
num_hidden_layers,
n_splits_linear: int = 1,
n_splits_down_proj: int = 1,
group_size: int = 0
group_size: int = 0,
asym: bool = False,
):
super().__init__(max_seq_len=max_seq_len,
transpose_value=transpose_value,
@ -90,7 +91,8 @@ class LowBitMinicpmMultiDecoderlayer(LLMBaseNNFactory):
device=device,
n_splits_linear=n_splits_linear,
n_splits_down_proj=n_splits_down_proj,
group_size=group_size)
group_size=group_size,
asym=asym)
self.max_seq_len = max_seq_len
self.intermediate_size = intermediate_size
self.dtype = dtype
@ -272,7 +274,8 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
do_print: bool = False,
n_splits_linear: int = 1,
n_splits_down_proj: int = 1,
group_size: int = 0
group_size: int = 0,
asym: bool = False,
):
super().__init__()
@ -280,8 +283,10 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
op_parameters = []
for w in parameters:
if isinstance(w, tuple): # from QuantizedLinear
if isinstance(w, tuple) and not asym: # from QuantizedLinear
op_parameters.append((w[0].numpy(), w[1].numpy()))
elif isinstance(w, tuple) and asym: # from QuantizedLinear
op_parameters.append((w[0].numpy(), w[1].numpy(), w[2].numpy()))
elif w.dtype in [torch.int8, torch.uint8]: # QuantizedLinear weight
op_parameters.append(w.numpy())
elif isinstance(w, np.ndarray): # scale
@ -336,7 +341,8 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
dtype=np_dtype,
n_splits_linear=n_splits_linear,
n_splits_down_proj=n_splits_down_proj,
group_size=group_size
group_size=group_size,
asym=asym,
)
self.backend_decoders.append(decoder)
@ -414,7 +420,8 @@ class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
transpose_value: bool = False,
n_splits_linear: int = 1,
n_splits_down_proj: int = 1,
group_size: int = 0
group_size: int = 0,
asym: bool = False,
):
super().__init__()
self.op_parameters = parameters
@ -447,7 +454,8 @@ class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
dtype=np_dtype,
n_splits_linear=n_splits_linear,
n_splits_down_proj=n_splits_down_proj,
group_size=group_size
group_size=group_size,
asym=asym,
)
self.layer_norm_0 = layer_norm_0
self.layer_norm_1 = layer_norm_1
@ -534,6 +542,7 @@ def run_decode(
layer_indexs = range(layer_start, layer_end)
n_splits_linear = len(model.model.layers[0].mlp.gate_proj_dq_list)
n_splits_down_proj = len(model.model.layers[0].mlp.down_proj_dq_list)
asym = getattr(model.config, "asym", False)
for layer_idx in layer_indexs:
curr_layer = model.model.layers[layer_idx]
attn_layer = curr_layer.self_attn
@ -546,10 +555,17 @@ def run_decode(
mlp_layer.down_proj_dq_list]:
l_weights = []
scales = []
zeros = []
for l in layer_list:
l_weights.append(l.weight)
scales.append(l.scale)
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
if l.zero is not None:
zeros.append(l.zero)
if len(zeros):
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0),
torch.stack(zeros, axis=0)))
else:
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
cached_cos = curr_layer.self_attn.rotary_emb.cos_cached.to(torch.float16)
cached_sin = curr_layer.self_attn.rotary_emb.sin_cached.to(torch.float16)
@ -580,7 +596,8 @@ def run_decode(
do_print=False,
n_splits_linear=n_splits_linear,
n_splits_down_proj=n_splits_down_proj,
group_size=group_size
group_size=group_size,
asym=asym,
)
dist.barrier()
@ -753,6 +770,7 @@ def run_prefill(
layer_indexs = range(layer_start, layer_end)
n_splits_linear = len(model.model.layers[0].mlp.gate_proj_dq_list)
n_splits_down_proj = len(model.model.layers[0].mlp.down_proj_dq_list)
asym = getattr(model.config, "asym", False)
for layer_idx in layer_indexs:
curr_layer = model.model.layers[layer_idx]
attn_layer = curr_layer.self_attn
@ -765,10 +783,17 @@ def run_prefill(
mlp_layer.down_proj_dq_list]:
l_weights = []
scales = []
zeros = []
for l in layer_list:
l_weights.append(l.weight)
scales.append(l.scale)
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
if l.zero is not None:
zeros.append(l.zero)
if len(zeros):
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0),
torch.stack(zeros, axis=0)))
else:
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
cached_cos = curr_layer.self_attn.rotary_emb.cos_cached.to(torch.float16)
cached_sin = curr_layer.self_attn.rotary_emb.sin_cached.to(torch.float16)
@ -793,7 +818,8 @@ def run_prefill(
transpose_value=transpose_value_cache,
n_splits_linear=n_splits_linear,
n_splits_down_proj=n_splits_down_proj,
group_size=group_size
group_size=group_size,
asym=asym
)
layer_weights.extend(weights)

View file

@ -105,6 +105,7 @@ class MiniCPMLMHead(LLMBaseNNFactory):
profile: bool = False,
device: str = "NPU",
n_splits: int = 1,
asym: bool = False
):
super().__init__(max_seq_len=max_seq_len,
transpose_value=transpose_value,
@ -134,11 +135,13 @@ class MiniCPMLMHead(LLMBaseNNFactory):
# for MiniCPM-2B-sft-bf16
hidden_states_1 = self.linear(
hidden_states, 73440, self.hidden_size, bias=False, wt_dtype=self.dtype,
n_splits=n_splits, scale_factor=(n_splits == 1)
n_splits=n_splits, scale_factor=(n_splits == 1),
asym=asym
)
hidden_states_2 = self.linear(
hidden_states, 73440, self.hidden_size, bias=False, wt_dtype=self.dtype,
n_splits=n_splits, scale_factor=(n_splits == 1)
n_splits=n_splits, scale_factor=(n_splits == 1),
asym=asym
)
hidden_states_2 = self.slice(hidden_states_2, begin=[0, 0, 0], end=[1, 1, 49313])
@ -147,7 +150,8 @@ class MiniCPMLMHead(LLMBaseNNFactory):
# for MiniCPM-1B-sft-bf16
hidden_states = self.linear(
hidden_states, self.vocab_size, self.hidden_size, bias=False,
wt_dtype=self.dtype, n_splits=n_splits, scale_factor=(n_splits == 1)
wt_dtype=self.dtype, n_splits=n_splits, scale_factor=(n_splits == 1),
asym=asym
)
# define outputs
@ -165,28 +169,48 @@ def convert_lm_head_and_embedding(model, n_splits_linear, temp_dir, weight_dir,
rms_norm_eps = model.config.rms_norm_eps
vocab_size = model.config.vocab_size
model_norm = model.model.norm
asym = getattr(model.config, "asym", False)
if n_splits_linear == 1:
if vocab_size == 122753:
# for MiniCPM-2B-sft-bf16
weights = [(model.lm_head_0.weight, model.lm_head_0.scale),
(model.lm_head_1.weight, model.lm_head_1.scale)]
asym = model.lm_head_0.qtype == "asym_int4_rtn"
if asym:
weights = [(model.lm_head_0.weight, model.lm_head_0.scale, model.lm_head_0.zero),
(model.lm_head_1.weight, model.lm_head_1.scale, model.lm_head_1.zero)]
else:
weights = [(model.lm_head_0.weight, model.lm_head_0.scale),
(model.lm_head_1.weight, model.lm_head_1.scale)]
else:
# for MiniCPM-1B-sft-bf16
weights = [(model.lm_head.weight, model.lm_head.scale)]
asym = model.lm_head.qtype == "asym_int4_rtn"
if asym:
weights = [(model.lm_head.weight, model.lm_head.scale, model.lm_head.zero)]
else:
weights = [(model.lm_head.weight, model.lm_head.scale)]
else:
weights = []
if vocab_size == 122753:
asym = model.lm_head_0.lm_heads[0].qtype == "asym_int4_rtn"
lm_head_list = [model.lm_head_0.lm_heads, model.lm_head_1.lm_heads]
else:
asym = model.lm_head.lm_heads[0].qtype == "asym_int4_rtn"
lm_head_list = [model.lm_head.lm_heads]
for lh in lm_head_list:
lm_head_weights = []
scales = []
zeros = []
for l in lh:
lm_head_weights.append(l.weight)
scales.append(l.scale)
weights.append((torch.stack(lm_head_weights, axis=0),
torch.stack(scales, axis=0)))
if l.zero is not None:
zeros.append(l.zero)
if len(zeros):
weights.append((torch.stack(lm_head_weights, axis=0),
torch.stack(scales, axis=0),
torch.stack(zeros, axis=0)))
else:
weights.append((torch.stack(lm_head_weights, axis=0),
torch.stack(scales, axis=0)))
if isinstance(weights[0], tuple):
np_dtype = np.int8 if weights[0][0].dtype == torch.int8 else np.uint8
else: # FP16 Linear
@ -202,7 +226,8 @@ def convert_lm_head_and_embedding(model, n_splits_linear, temp_dir, weight_dir,
dtype=np_dtype,
model_norm_weight=model_norm.weight.to(torch.float16),
vocab_size=vocab_size,
n_splits=n_splits_linear
n_splits=n_splits_linear,
asym=asym
)
last_blob_path = update_names_of_IR_and_export_blob(new_lm_head, "lm_head", temp_dir,
True, True)
@ -210,12 +235,24 @@ def convert_lm_head_and_embedding(model, n_splits_linear, temp_dir, weight_dir,
# save weights bins files
if n_splits_linear == 1:
if vocab_size == 122753:
weight_numpy = [model.lm_head_0.weight.data.numpy(),
model.lm_head_0.scale.data.numpy(),
model.lm_head_1.weight.data.numpy(),
model.lm_head_1.scale.data.numpy(), ]
if not asym:
weight_numpy = [model.lm_head_0.weight.data.numpy(),
model.lm_head_0.scale.data.numpy(),
model.lm_head_1.weight.data.numpy(),
model.lm_head_1.scale.data.numpy(), ]
else:
weight_numpy = [model.lm_head_0.weight.data.numpy(),
model.lm_head_0.scale.data.numpy(),
model.lm_head_0.zero.data.numpy(),
model.lm_head_1.weight.data.numpy(),
model.lm_head_1.scale.data.numpy(),
model.lm_head_1.zero.data.numpy(), ]
else:
weight_numpy = [model.lm_head.weight.data.numpy(), model.lm_head.scale.data.numpy(), ]
if not asym:
weight_numpy = [model.lm_head.weight.data.numpy(), model.lm_head.scale.data.numpy()]
else:
weight_numpy = [model.lm_head.weight.data.numpy(), model.lm_head.scale.data.numpy(),
model.lm_head.zero.data.numpy()]
else:
weight_numpy = [v.numpy() for v in weights[0]]
if vocab_size == 122753:
@ -266,6 +303,7 @@ def convert_minicpm_layer(model, layer_idx, n_splits_linear, n_splits_down_proj,
rms_norm_eps = model.config.rms_norm_eps
num_hidden_layers = model.config.num_hidden_layers
scale_depth = model.model.config.scale_depth
asym = getattr(model.config, "asym", False)
from ipex_llm.transformers.npu_models.minicpm_mp import LowBitMinicpmMultiDecoderlayer
curr_layer = model.model.layers[layer_idx]
@ -279,10 +317,17 @@ def convert_minicpm_layer(model, layer_idx, n_splits_linear, n_splits_down_proj,
mlp_layer.down_proj_dq_list]:
l_weights = []
scales = []
zeros = []
for l in layer_list:
l_weights.append(l.weight)
scales.append(l.scale)
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
if l.zero is not None:
zeros.append(l.zero)
if len(zeros):
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0),
torch.stack(zeros, axis=0)))
else:
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
cached_cos = curr_layer.self_attn.rotary_emb.cos_cached.to(torch.float16)
cached_sin = curr_layer.self_attn.rotary_emb.sin_cached.to(torch.float16)
@ -321,7 +366,8 @@ def convert_minicpm_layer(model, layer_idx, n_splits_linear, n_splits_down_proj,
dtype=np_dtype,
n_splits_linear=n_splits_linear,
n_splits_down_proj=n_splits_down_proj,
group_size=group_size
group_size=group_size,
asym=asym
)
rest_blob_path = update_names_of_IR_and_export_blob(single_decoder,
decoder_name,
@ -337,11 +383,23 @@ def convert_minicpm_layer(model, layer_idx, n_splits_linear, n_splits_down_proj,
layer_norm_0.data.numpy().tofile(input_lm_bin_file)
layer_norm_1.data.numpy().tofile(post_lm_bin_file)
st_idx = 7
for idx, (weight, scale) in enumerate(weights):
bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_{st_idx+idx*2}.bin")
weight.numpy().tofile(bin_file)
bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_{st_idx+idx*2+1}.bin")
scale.numpy().tofile(bin_file)
if not asym:
for idx, (weight, scale) in enumerate(weights):
bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_{st_idx+idx*2}.bin")
weight.numpy().tofile(bin_file)
bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_{st_idx+idx*2+1}.bin")
scale.numpy().tofile(bin_file)
else:
for idx, (weight, scale, zero) in enumerate(weights):
bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_{st_idx+idx*3}.bin")
weight.numpy().tofile(bin_file)
bin_file = os.path.join(weight_dir,
f"model_{layer_idx}_input_{st_idx+idx*3+1}.bin")
scale.numpy().tofile(bin_file)
bin_file = os.path.join(weight_dir,
f"model_{layer_idx}_input_{st_idx+idx*3+2}.bin")
zero.numpy().tofile(bin_file)
del single_decoder
@ -357,6 +415,7 @@ def convert_fused_minicpm_layer(model, fused_layers, n_splits_linear, n_splits_d
scale_depth = model.model.config.scale_depth
layer_num = len(model.model.layers)
fused_layer_num = layer_num // fused_layers
asym = getattr(model.config, "asym", False)
from ipex_llm.transformers.npu_models.minicpm_mp import LowBitMinicpmMultiDecoderlayer
for i in range(fused_layers):
@ -380,10 +439,17 @@ def convert_fused_minicpm_layer(model, fused_layers, n_splits_linear, n_splits_d
mlp_layer.down_proj_dq_list]:
l_weights = []
scales = []
zeros = []
for l in layer_list:
l_weights.append(l.weight)
scales.append(l.scale)
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
if l.zero is not None:
zeros.append(l.zero)
if len(zeros):
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0),
torch.stack(zeros, axis=0)))
else:
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
cached_cos = curr_layer.self_attn.rotary_emb.cos_cached.to(torch.float16)
cached_sin = curr_layer.self_attn.rotary_emb.sin_cached.to(torch.float16)
@ -401,12 +467,25 @@ def convert_fused_minicpm_layer(model, fused_layers, n_splits_linear, n_splits_d
layer_norm_1.data.numpy().tofile(post_lm_bin_file)
st_idx = 5
# 6, 7 are past k/v
for idx, (weight, scale) in enumerate(weights):
bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_{st_idx+idx*2}.bin")
weight.numpy().tofile(bin_file)
bin_file = os.path.join(weight_dir,
f"model_{layer_idx}_input_{st_idx+idx*2+1}.bin")
scale.numpy().tofile(bin_file)
if not asym:
for idx, (weight, scale) in enumerate(weights):
bin_file = os.path.join(weight_dir,
f"model_{layer_idx}_input_{st_idx+idx*2}.bin")
weight.numpy().tofile(bin_file)
bin_file = os.path.join(weight_dir,
f"model_{layer_idx}_input_{st_idx+idx*2+1}.bin")
scale.numpy().tofile(bin_file)
else:
for idx, (weight, scale, zero) in enumerate(weights):
bin_file = os.path.join(weight_dir,
f"model_{layer_idx}_input_{st_idx+idx*3}.bin")
weight.numpy().tofile(bin_file)
bin_file = os.path.join(weight_dir,
f"model_{layer_idx}_input_{st_idx+idx*3+1}.bin")
scale.numpy().tofile(bin_file)
bin_file = os.path.join(weight_dir,
f"model_{layer_idx}_input_{st_idx+idx*3+2}.bin")
zero.numpy().tofile(bin_file)
if isinstance(weights[0], tuple):
np_dtype = np.int8 if weights[0][0].dtype == torch.int8 else np.uint8
@ -432,7 +511,8 @@ def convert_fused_minicpm_layer(model, fused_layers, n_splits_linear, n_splits_d
dtype=np_dtype,
n_splits_linear=n_splits_linear,
n_splits_down_proj=n_splits_down_proj,
group_size=group_size
group_size=group_size,
asym=asym
)
update_names_of_IR_and_export_blob(fused_decoder,
f"decoder_layer_{i}",