LLM: Add Replit CPU and GPU example (#9028)
This commit is contained in:
parent
d74834ff4c
commit
1a1ddc4144
6 changed files with 279 additions and 0 deletions
|
|
@ -22,6 +22,7 @@ You can use BigDL-LLM to run any Huggingface Transformer models with INT4 optimi
|
||||||
| Whisper | [link](whisper) |
|
| Whisper | [link](whisper) |
|
||||||
| Qwen | [link](qwen) |
|
| Qwen | [link](qwen) |
|
||||||
| Aquila | [link](aquila) |
|
| Aquila | [link](aquila) |
|
||||||
|
| Replit | [link](replit) |
|
||||||
| Mistral | [link](mistral) |
|
| Mistral | [link](mistral) |
|
||||||
|
|
||||||
## Recommended Requirements
|
## Recommended Requirements
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,66 @@
|
||||||
|
# Replit
|
||||||
|
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Replit models. For illustration purposes, we utilize the [replit/replit-code-v1-3b](https://huggingface.co/replit/replit-code-v1-3b) as a reference Replit model.
|
||||||
|
|
||||||
|
## 0. Requirements
|
||||||
|
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||||
|
|
||||||
|
## Example: Predict Tokens using `generate()` API
|
||||||
|
In the example [generate.py](./generate.py), we show a basic use case for an Replit model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
|
||||||
|
### 1. Install
|
||||||
|
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
|
||||||
|
|
||||||
|
After installing conda, create a Python environment for BigDL-LLM:
|
||||||
|
```bash
|
||||||
|
conda create -n llm python=3.9 # recommend to use Python 3.9
|
||||||
|
conda activate llm
|
||||||
|
|
||||||
|
pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. Run
|
||||||
|
After setting up the Python environment, you could run the example by following steps.
|
||||||
|
|
||||||
|
#### 2.1 Client
|
||||||
|
On client Windows machine, it is recommended to run directly with full utilization of all cores:
|
||||||
|
```powershell
|
||||||
|
python ./generate.py --prompt 'def print_hello_world():'
|
||||||
|
```
|
||||||
|
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
|
||||||
|
|
||||||
|
#### 2.2 Server
|
||||||
|
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
|
||||||
|
|
||||||
|
E.g. on Linux,
|
||||||
|
```bash
|
||||||
|
# set BigDL-Nano env variables
|
||||||
|
source bigdl-nano-init
|
||||||
|
|
||||||
|
# e.g. for a server with 48 cores per socket
|
||||||
|
export OMP_NUM_THREADS=48
|
||||||
|
numactl -C 0-47 -m 0 python ./generate.py
|
||||||
|
```
|
||||||
|
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
|
||||||
|
|
||||||
|
#### 2.3 Arguments Info
|
||||||
|
In the example, several arguments can be passed to satisfy your requirements:
|
||||||
|
|
||||||
|
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Replit model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'replit/replit-code-v1-3b'`.
|
||||||
|
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'def print_hello_world():'`.
|
||||||
|
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||||
|
|
||||||
|
#### 2.4 Sample Output
|
||||||
|
#### [replit/replit-code-v1-3b](https://huggingface.co/bigcode/replit/replit-code-v1-3b)
|
||||||
|
```log
|
||||||
|
-------------------- Prompt --------------------
|
||||||
|
def print_hello_world():
|
||||||
|
-------------------- Output --------------------
|
||||||
|
def print_hello_world():
|
||||||
|
print("Hello")
|
||||||
|
print("World")
|
||||||
|
|
||||||
|
print_hello_world()
|
||||||
|
|
||||||
|
|
||||||
|
def print_hello_world():
|
||||||
|
print
|
||||||
|
```
|
||||||
|
|
@ -0,0 +1,67 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import time
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
from bigdl.llm.transformers import AutoModelForCausalLM
|
||||||
|
from transformers import AutoTokenizer
|
||||||
|
|
||||||
|
# you could tune the prompt based on your own model,
|
||||||
|
REPLIT_PROMPT_FORMAT = "{prompt}"
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Replit model')
|
||||||
|
parser.add_argument('--repo-id-or-model-path', type=str, default="replit/replit-code-v1-3b",
|
||||||
|
help='The huggingface repo id for the Replit to be downloaded'
|
||||||
|
', or the path to the huggingface checkpoint folder')
|
||||||
|
parser.add_argument('--prompt', type=str, default="def print_hello_world():",
|
||||||
|
help='Prompt to infer')
|
||||||
|
parser.add_argument('--n-predict', type=int, default=32,
|
||||||
|
help='Max tokens to predict')
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
model_path = args.repo_id_or_model_path
|
||||||
|
|
||||||
|
# Load model in 4 bit,
|
||||||
|
# which convert the relevant layers in the model into INT4 format
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(model_path,
|
||||||
|
load_in_4bit=True,
|
||||||
|
trust_remote_code=True)
|
||||||
|
|
||||||
|
# Load tokenizer
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
||||||
|
trust_remote_code=True)
|
||||||
|
|
||||||
|
# Generate predicted tokens
|
||||||
|
with torch.inference_mode():
|
||||||
|
prompt = REPLIT_PROMPT_FORMAT.format(prompt=args.prompt)
|
||||||
|
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
||||||
|
st = time.time()
|
||||||
|
# if your selected model is capable of utilizing previous key/value attentions
|
||||||
|
# to enhance decoding speed, but has `"use_cache": false` in its model config,
|
||||||
|
# it is important to set `use_cache=True` explicitly in the `generate` function
|
||||||
|
# to obtain optimal performance with BigDL-LLM INT4 optimizations
|
||||||
|
output = model.generate(input_ids,
|
||||||
|
max_new_tokens=args.n_predict)
|
||||||
|
end = time.time()
|
||||||
|
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||||
|
print(f'Inference time: {end-st} s')
|
||||||
|
print('-'*20, 'Prompt', '-'*20)
|
||||||
|
print(prompt)
|
||||||
|
print('-'*20, 'Output', '-'*20)
|
||||||
|
print(output_str)
|
||||||
|
|
@ -2,6 +2,7 @@
|
||||||
You can use BigDL-LLM to run almost every Huggingface Transformer models with INT4 optimizations on your laptops with Intel GPUs. This directory contains example scripts to help you quickly get started using BigDL-LLM to run some popular open-source models in the community. Each model has its own dedicated folder, where you can find detailed instructions on how to install and run it.
|
You can use BigDL-LLM to run almost every Huggingface Transformer models with INT4 optimizations on your laptops with Intel GPUs. This directory contains example scripts to help you quickly get started using BigDL-LLM to run some popular open-source models in the community. Each model has its own dedicated folder, where you can find detailed instructions on how to install and run it.
|
||||||
|
|
||||||
## Verified models
|
## Verified models
|
||||||
|
|
||||||
| Model | Example |
|
| Model | Example |
|
||||||
|----------------|----------------------------------------------------------|
|
|----------------|----------------------------------------------------------|
|
||||||
| Aquila | [link](aquila) |
|
| Aquila | [link](aquila) |
|
||||||
|
|
@ -21,6 +22,8 @@ You can use BigDL-LLM to run almost every Huggingface Transformer models with IN
|
||||||
| StarCoder | [link](starcoder) |
|
| StarCoder | [link](starcoder) |
|
||||||
| Vicuna | [link](vicuna) |
|
| Vicuna | [link](vicuna) |
|
||||||
| Whisper | [link](whisper) |
|
| Whisper | [link](whisper) |
|
||||||
|
| Replit | [link](replit) |
|
||||||
|
|
||||||
|
|
||||||
## Verified Hardware Platforms
|
## Verified Hardware Platforms
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,64 @@
|
||||||
|
# Replit
|
||||||
|
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Replit models on [Intel GPUs](../README.md). For illustration purposes, we utilize the [replit/replit-code-v1-3b](https://huggingface.co/replit/replit-code-v1-3b) as a reference Replit model.
|
||||||
|
|
||||||
|
## 0. Requirements
|
||||||
|
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||||
|
|
||||||
|
## Example: Predict Tokens using `generate()` API
|
||||||
|
In the example [generate.py](./generate.py), we show a basic use case for an Replit model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
|
||||||
|
### 1. Install
|
||||||
|
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
|
||||||
|
|
||||||
|
After installing conda, create a Python environment for BigDL-LLM:
|
||||||
|
```bash
|
||||||
|
conda create -n llm python=3.9
|
||||||
|
conda activate llm
|
||||||
|
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
|
||||||
|
# you can install specific ipex/torch version for your need
|
||||||
|
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. Configures OneAPI environment variables
|
||||||
|
```bash
|
||||||
|
source /opt/intel/oneapi/setvars.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
### 3. Run
|
||||||
|
|
||||||
|
For optimal performance on Arc, it is recommended to set several environment variables.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export USE_XETLA=OFF
|
||||||
|
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||||
|
```
|
||||||
|
|
||||||
|
```
|
||||||
|
python ./generate.py --prompt 'def print_hello_world():'
|
||||||
|
```
|
||||||
|
More information about arguments can be found in [Arguments Info](#31-arguments-info) section. The expected output can be found in [Sample Output](#32-sample-output) section.
|
||||||
|
|
||||||
|
#### 3.1 Arguments Info
|
||||||
|
In the example, several arguments can be passed to satisfy your requirements:
|
||||||
|
|
||||||
|
Arguments info:
|
||||||
|
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Replit model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'replit/replit-code-v1-3b'`.
|
||||||
|
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'def print_hello_world():'`.
|
||||||
|
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||||
|
|
||||||
|
#### 3.2 Sample Output
|
||||||
|
#### [replit/replit-code-v1-3b](https://huggingface.co/replit/replit-code-v1-3b)
|
||||||
|
```log
|
||||||
|
Inference time: xxxx s
|
||||||
|
-------------------- Prompt --------------------
|
||||||
|
def print_hello_world():
|
||||||
|
-------------------- Output --------------------
|
||||||
|
def print_hello_world():
|
||||||
|
print("Hello")
|
||||||
|
print("World")
|
||||||
|
|
||||||
|
print_hello_world()
|
||||||
|
|
||||||
|
|
||||||
|
def print_hello_world():
|
||||||
|
print
|
||||||
|
```
|
||||||
|
|
@ -0,0 +1,78 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import intel_extension_for_pytorch as ipex
|
||||||
|
import time
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
from bigdl.llm.transformers import AutoModelForCausalLM
|
||||||
|
from transformers import AutoTokenizer
|
||||||
|
|
||||||
|
# you could tune the prompt based on your own model,
|
||||||
|
REPLIT_PROMPT_FORMAT = "{prompt}"
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Replit model')
|
||||||
|
parser.add_argument('--repo-id-or-model-path', type=str, default="replit/replit-code-v1-3b",
|
||||||
|
help='The huggingface repo id for the Replit to be downloaded'
|
||||||
|
', or the path to the huggingface checkpoint folder')
|
||||||
|
parser.add_argument('--prompt', type=str, default="def print_hello_world():",
|
||||||
|
help='Prompt to infer')
|
||||||
|
parser.add_argument('--n-predict', type=int, default=32,
|
||||||
|
help='Max tokens to predict')
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
model_path = args.repo_id_or_model_path
|
||||||
|
|
||||||
|
# Load model in 4 bit,
|
||||||
|
# which convert the relevant layers in the model into INT4 format
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(model_path,
|
||||||
|
load_in_4bit=True,
|
||||||
|
optimize_model=True,
|
||||||
|
trust_remote_code=True,
|
||||||
|
use_cache=True)
|
||||||
|
model = model.to('xpu')
|
||||||
|
|
||||||
|
# Load tokenizer
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
||||||
|
trust_remote_code=True)
|
||||||
|
|
||||||
|
# Generate predicted tokens
|
||||||
|
with torch.inference_mode():
|
||||||
|
prompt = REPLIT_PROMPT_FORMAT.format(prompt=args.prompt)
|
||||||
|
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
|
||||||
|
|
||||||
|
# ipex model needs a warmup, then inference time can be accurate
|
||||||
|
output = model.generate(input_ids,
|
||||||
|
max_new_tokens=args.n_predict)
|
||||||
|
|
||||||
|
# start inference
|
||||||
|
st = time.time()
|
||||||
|
# if your selected model is capable of utilizing previous key/value attentions
|
||||||
|
# to enhance decoding speed, but has `"use_cache": false` in its model config,
|
||||||
|
# it is important to set `use_cache=True` explicitly in the `generate` function
|
||||||
|
# to obtain optimal performance with BigDL-LLM INT4 optimizations
|
||||||
|
output = model.generate(input_ids,
|
||||||
|
max_new_tokens=args.n_predict)
|
||||||
|
torch.xpu.synchronize()
|
||||||
|
end = time.time()
|
||||||
|
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||||
|
print(f'Inference time: {end-st} s')
|
||||||
|
print('-'*20, 'Prompt', '-'*20)
|
||||||
|
print(prompt)
|
||||||
|
print('-'*20, 'Output', '-'*20)
|
||||||
|
print(output_str)
|
||||||
Loading…
Reference in a new issue