Add support for llama2 quantize_kv with transformers 4.38.0 (#11054)
* add support for llama2 quantize_kv with transformers 4.38.0 * fix code style * fix code style
This commit is contained in:
		
							parent
							
								
									16b2a418be
								
							
						
					
					
						commit
						192ae35012
					
				
					 2 changed files with 175 additions and 5 deletions
				
			
		| 
						 | 
				
			
			@ -964,15 +964,18 @@ def _optimize_post(model, lightweight_bmm=False):
 | 
			
		|||
        if version.parse(trans_version) >= version.parse("4.36.0"):
 | 
			
		||||
            # transformers version >= 4.36.0
 | 
			
		||||
            from ipex_llm.transformers.models.llama import llama_attention_forward_4_38
 | 
			
		||||
            from ipex_llm.transformers.models.llama import llama_model_forward_4_36
 | 
			
		||||
            if version.parse(trans_version) >= version.parse("4.38.0"):
 | 
			
		||||
                from ipex_llm.transformers.models.llama import llama_attention_forward_4_38_original
 | 
			
		||||
                # Todo: support llama_model_forward with transformers version >= 4.38.0
 | 
			
		||||
                from ipex_llm.transformers.models.llama import llama_model_forward_4_38
 | 
			
		||||
                convert_forward(
 | 
			
		||||
                    model,
 | 
			
		||||
                    transformers.models.llama.modeling_llama.LlamaModel,
 | 
			
		||||
                    llama_model_forward_4_38)
 | 
			
		||||
                convert_forward(
 | 
			
		||||
                    model,
 | 
			
		||||
                    transformers.models.llama.modeling_llama.LlamaAttention,
 | 
			
		||||
                    llama_attention_forward_4_38_original)
 | 
			
		||||
                    llama_attention_forward_4_38)
 | 
			
		||||
            else:
 | 
			
		||||
                from ipex_llm.transformers.models.llama import llama_model_forward_4_36
 | 
			
		||||
                convert_forward(
 | 
			
		||||
                    model,
 | 
			
		||||
                    transformers.models.llama.modeling_llama.LlamaModel,
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -133,6 +133,40 @@ def llama_model_forward_4_36(
 | 
			
		|||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def llama_model_forward_4_38(
 | 
			
		||||
    self,
 | 
			
		||||
    input_ids: torch.LongTensor = None,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    past_key_values: Optional[List[torch.FloatTensor]] = None,
 | 
			
		||||
    inputs_embeds: Optional[torch.FloatTensor] = None,
 | 
			
		||||
    use_cache: Optional[bool] = None,
 | 
			
		||||
    output_attentions: Optional[bool] = None,
 | 
			
		||||
    output_hidden_states: Optional[bool] = None,
 | 
			
		||||
    return_dict: Optional[bool] = None,
 | 
			
		||||
    cache_position: Optional[torch.LongTensor] = None,
 | 
			
		||||
) -> Union[Tuple, BaseModelOutputWithPast]:
 | 
			
		||||
    from ipex_llm.transformers.kv import DynamicFp8Cache
 | 
			
		||||
    use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
			
		||||
    input = input_ids if input_ids is not None else inputs_embeds
 | 
			
		||||
    if use_cache and use_quantize_kv_cache(self.layers[0].mlp.up_proj, input):
 | 
			
		||||
        if not isinstance(past_key_values, DynamicFp8Cache):
 | 
			
		||||
            past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
 | 
			
		||||
    return llama_model_forward_4_38_internal(
 | 
			
		||||
        self=self,
 | 
			
		||||
        input_ids=input_ids,
 | 
			
		||||
        attention_mask=attention_mask,
 | 
			
		||||
        position_ids=position_ids,
 | 
			
		||||
        past_key_values=past_key_values,
 | 
			
		||||
        inputs_embeds=inputs_embeds,
 | 
			
		||||
        use_cache=use_cache,
 | 
			
		||||
        output_attentions=output_attentions,
 | 
			
		||||
        output_hidden_states=output_hidden_states,
 | 
			
		||||
        return_dict=return_dict,
 | 
			
		||||
        cache_position=cache_position,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def llama_rms_norm_forward(self, hidden_states):
 | 
			
		||||
    if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad):
 | 
			
		||||
        import linear_q4_0
 | 
			
		||||
| 
						 | 
				
			
			@ -1143,8 +1177,12 @@ def llama_attention_forward_4_38_quantized(
 | 
			
		|||
            attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
        else:
 | 
			
		||||
            import linear_q4_0
 | 
			
		||||
            if cache_position is not None:
 | 
			
		||||
                new_attn_mask = attention_mask[:, :, kv_seq_len-q_len:kv_seq_len, 0:kv_seq_len]
 | 
			
		||||
            else:
 | 
			
		||||
                new_attn_mask = attention_mask
 | 
			
		||||
            attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
 | 
			
		||||
                                              attention_mask)
 | 
			
		||||
                                              new_attn_mask)
 | 
			
		||||
            attn_weights = None
 | 
			
		||||
 | 
			
		||||
    if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
 | 
			
		||||
| 
						 | 
				
			
			@ -1802,6 +1840,135 @@ def llama_attention_fast_forward(
 | 
			
		|||
    return attn_output, attn_weights, past_key_value
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def llama_model_forward_4_38_internal(
 | 
			
		||||
    self,
 | 
			
		||||
    input_ids: torch.LongTensor = None,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    past_key_values: Optional[List[torch.FloatTensor]] = None,
 | 
			
		||||
    inputs_embeds: Optional[torch.FloatTensor] = None,
 | 
			
		||||
    use_cache: Optional[bool] = None,
 | 
			
		||||
    output_attentions: Optional[bool] = None,
 | 
			
		||||
    output_hidden_states: Optional[bool] = None,
 | 
			
		||||
    return_dict: Optional[bool] = None,
 | 
			
		||||
    cache_position: Optional[torch.LongTensor] = None,
 | 
			
		||||
) -> Union[Tuple, BaseModelOutputWithPast]:
 | 
			
		||||
    output_attentions = output_attentions if output_attentions is not None else \
 | 
			
		||||
        self.config.output_attentions
 | 
			
		||||
    output_hidden_states = (
 | 
			
		||||
        output_hidden_states if output_hidden_states is not None else
 | 
			
		||||
        self.config.output_hidden_states
 | 
			
		||||
    )
 | 
			
		||||
    use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
			
		||||
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
 | 
			
		||||
 | 
			
		||||
    # retrieve input_ids and inputs_embeds
 | 
			
		||||
    if (input_ids is None) ^ (inputs_embeds is not None):
 | 
			
		||||
        invalidInputError(False,
 | 
			
		||||
                          f"You cannot specify both input_ids and inputs_embeds at the same time,"
 | 
			
		||||
                          f" and must specify either one")
 | 
			
		||||
 | 
			
		||||
    if self.gradient_checkpointing and self.training and use_cache:
 | 
			
		||||
        logger.warning_once(
 | 
			
		||||
            "`use_cache=True` is incompatible with gradient checkpointing. "
 | 
			
		||||
            "Setting `use_cache=False`."
 | 
			
		||||
        )
 | 
			
		||||
        use_cache = False
 | 
			
		||||
 | 
			
		||||
    if inputs_embeds is None:
 | 
			
		||||
        inputs_embeds = self.embed_tokens(input_ids)
 | 
			
		||||
 | 
			
		||||
    past_seen_tokens = 0
 | 
			
		||||
    if use_cache:  # kept for BC (cache positions)
 | 
			
		||||
        if not isinstance(past_key_values, Cache):
 | 
			
		||||
            past_key_values = DynamicCache.from_legacy_cache(past_key_values)
 | 
			
		||||
        past_seen_tokens = past_key_values.get_seq_length()
 | 
			
		||||
 | 
			
		||||
    if cache_position is None:
 | 
			
		||||
        cache_position = torch.arange(
 | 
			
		||||
            past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1],
 | 
			
		||||
            device=inputs_embeds.device
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    if position_ids is None:
 | 
			
		||||
        position_ids = cache_position.unsqueeze(0)
 | 
			
		||||
 | 
			
		||||
    causal_mask = self._update_causal_mask(attention_mask, inputs_embeds)
 | 
			
		||||
 | 
			
		||||
    # embed positions
 | 
			
		||||
    hidden_states = inputs_embeds
 | 
			
		||||
 | 
			
		||||
    # decoder layers
 | 
			
		||||
    all_hidden_states = () if output_hidden_states else None
 | 
			
		||||
    all_self_attns = () if output_attentions else None
 | 
			
		||||
    next_decoder_cache = None
 | 
			
		||||
 | 
			
		||||
    for decoder_layer in self.layers:
 | 
			
		||||
        if output_hidden_states:
 | 
			
		||||
            all_hidden_states += (hidden_states,)
 | 
			
		||||
 | 
			
		||||
        if self.gradient_checkpointing and self.training:
 | 
			
		||||
            layer_outputs = self._gradient_checkpointing_func(
 | 
			
		||||
                decoder_layer.__call__,
 | 
			
		||||
                hidden_states,
 | 
			
		||||
                causal_mask,
 | 
			
		||||
                position_ids,
 | 
			
		||||
                past_key_values,
 | 
			
		||||
                output_attentions,
 | 
			
		||||
                use_cache,
 | 
			
		||||
                cache_position,
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            # bigdl-llm changes:
 | 
			
		||||
            curr_device = decoder_layer.input_layernorm.weight.device
 | 
			
		||||
            if causal_mask is not None:
 | 
			
		||||
                causal_mask = causal_mask.to(curr_device)
 | 
			
		||||
            if position_ids is not None:
 | 
			
		||||
                position_ids = position_ids.to(curr_device)
 | 
			
		||||
            # bigdl-llm changes end
 | 
			
		||||
            layer_outputs = decoder_layer(
 | 
			
		||||
                hidden_states,
 | 
			
		||||
                attention_mask=causal_mask,
 | 
			
		||||
                position_ids=position_ids,
 | 
			
		||||
                past_key_value=past_key_values,
 | 
			
		||||
                output_attentions=output_attentions,
 | 
			
		||||
                use_cache=use_cache,
 | 
			
		||||
                cache_position=cache_position,
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        hidden_states = layer_outputs[0]
 | 
			
		||||
 | 
			
		||||
        if use_cache:
 | 
			
		||||
            next_decoder_cache = layer_outputs[2 if output_attentions else 1]
 | 
			
		||||
 | 
			
		||||
        if output_attentions:
 | 
			
		||||
            all_self_attns += (layer_outputs[1],)
 | 
			
		||||
 | 
			
		||||
    hidden_states = self.norm(hidden_states)
 | 
			
		||||
 | 
			
		||||
    # add hidden states from the last decoder layer
 | 
			
		||||
    if output_hidden_states:
 | 
			
		||||
        all_hidden_states += (hidden_states,)
 | 
			
		||||
 | 
			
		||||
    next_cache = None
 | 
			
		||||
    from ipex_llm.transformers.kv import DynamicFp8Cache
 | 
			
		||||
    if use_cache:
 | 
			
		||||
        next_cache = (
 | 
			
		||||
            next_decoder_cache.to_legacy_cache()
 | 
			
		||||
            if not isinstance(next_decoder_cache, DynamicFp8Cache)
 | 
			
		||||
            else next_decoder_cache
 | 
			
		||||
        )
 | 
			
		||||
    if not return_dict:
 | 
			
		||||
        return tuple(v for v in [hidden_states, next_cache, all_hidden_states,
 | 
			
		||||
                                 all_self_attns] if v is not None)
 | 
			
		||||
    return BaseModelOutputWithPast(
 | 
			
		||||
        last_hidden_state=hidden_states,
 | 
			
		||||
        past_key_values=next_cache,
 | 
			
		||||
        hidden_states=all_hidden_states,
 | 
			
		||||
        attentions=all_self_attns,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def llama_model_forward_4_36_internal(
 | 
			
		||||
    self,
 | 
			
		||||
    input_ids: torch.LongTensor = None,
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue