Add support for llama2 quantize_kv with transformers 4.38.0 (#11054)

* add support for llama2 quantize_kv with transformers 4.38.0

* fix code style

* fix code style
This commit is contained in:
SONG Ge 2024-05-16 22:23:39 +08:00 committed by GitHub
parent 16b2a418be
commit 192ae35012
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 175 additions and 5 deletions

View file

@ -964,15 +964,18 @@ def _optimize_post(model, lightweight_bmm=False):
if version.parse(trans_version) >= version.parse("4.36.0"):
# transformers version >= 4.36.0
from ipex_llm.transformers.models.llama import llama_attention_forward_4_38
from ipex_llm.transformers.models.llama import llama_model_forward_4_36
if version.parse(trans_version) >= version.parse("4.38.0"):
from ipex_llm.transformers.models.llama import llama_attention_forward_4_38_original
# Todo: support llama_model_forward with transformers version >= 4.38.0
from ipex_llm.transformers.models.llama import llama_model_forward_4_38
convert_forward(
model,
transformers.models.llama.modeling_llama.LlamaModel,
llama_model_forward_4_38)
convert_forward(
model,
transformers.models.llama.modeling_llama.LlamaAttention,
llama_attention_forward_4_38_original)
llama_attention_forward_4_38)
else:
from ipex_llm.transformers.models.llama import llama_model_forward_4_36
convert_forward(
model,
transformers.models.llama.modeling_llama.LlamaModel,

View file

@ -133,6 +133,40 @@ def llama_model_forward_4_36(
)
def llama_model_forward_4_38(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
from ipex_llm.transformers.kv import DynamicFp8Cache
use_cache = use_cache if use_cache is not None else self.config.use_cache
input = input_ids if input_ids is not None else inputs_embeds
if use_cache and use_quantize_kv_cache(self.layers[0].mlp.up_proj, input):
if not isinstance(past_key_values, DynamicFp8Cache):
past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
return llama_model_forward_4_38_internal(
self=self,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
def llama_rms_norm_forward(self, hidden_states):
if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad):
import linear_q4_0
@ -1143,8 +1177,12 @@ def llama_attention_forward_4_38_quantized(
attn_output = torch.matmul(attn_weights, value_states)
else:
import linear_q4_0
if cache_position is not None:
new_attn_mask = attention_mask[:, :, kv_seq_len-q_len:kv_seq_len, 0:kv_seq_len]
else:
new_attn_mask = attention_mask
attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
attention_mask)
new_attn_mask)
attn_weights = None
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
@ -1802,6 +1840,135 @@ def llama_attention_fast_forward(
return attn_output, attn_weights, past_key_value
def llama_model_forward_4_38_internal(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else \
self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else
self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if (input_ids is None) ^ (inputs_embeds is not None):
invalidInputError(False,
f"You cannot specify both input_ids and inputs_embeds at the same time,"
f" and must specify either one")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. "
"Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
past_seen_tokens = 0
if use_cache: # kept for BC (cache positions)
if not isinstance(past_key_values, Cache):
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_seen_tokens = past_key_values.get_seq_length()
if cache_position is None:
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1],
device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds)
# embed positions
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
)
else:
# bigdl-llm changes:
curr_device = decoder_layer.input_layernorm.weight.device
if causal_mask is not None:
causal_mask = causal_mask.to(curr_device)
if position_ids is not None:
position_ids = position_ids.to(curr_device)
# bigdl-llm changes end
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
from ipex_llm.transformers.kv import DynamicFp8Cache
if use_cache:
next_cache = (
next_decoder_cache.to_legacy_cache()
if not isinstance(next_decoder_cache, DynamicFp8Cache)
else next_decoder_cache
)
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states,
all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def llama_model_forward_4_36_internal(
self,
input_ids: torch.LongTensor = None,