From 191b18434182edf4114b3ec7ece42bd1cb99f4d6 Mon Sep 17 00:00:00 2001 From: "Wang, Jian4" <61138589+hzjane@users.noreply.github.com> Date: Tue, 7 May 2024 10:19:50 +0800 Subject: [PATCH] LLM: Optimize cohere model (#10878) * use mlp and rms * optimize kv_cache * add fuse qkv * add flash attention and fp16 sdp * error fp8 sdp * fix optimized * fix style * update * add for pp --- .../llm/src/ipex_llm/transformers/convert.py | 18 + .../ipex_llm/transformers/models/cohere.py | 457 ++++++++++++++++++ 2 files changed, 475 insertions(+) create mode 100644 python/llm/src/ipex_llm/transformers/models/cohere.py diff --git a/python/llm/src/ipex_llm/transformers/convert.py b/python/llm/src/ipex_llm/transformers/convert.py index 553e4e6c..dcd4597a 100644 --- a/python/llm/src/ipex_llm/transformers/convert.py +++ b/python/llm/src/ipex_llm/transformers/convert.py @@ -1282,6 +1282,24 @@ def _optimize_post(model, lightweight_bmm=False): convert_forward(model, module.Qwen2MoeAttention, qwen2moe_attention_forward) + elif model.config.model_type == "cohere": + # for CohereForAI/c4ai-command-r-v01 + modeling_module_name = model.__class__.__module__ + module = importlib.import_module(modeling_module_name) + from ipex_llm.transformers.models.cohere import cohere_attention_forward + from ipex_llm.transformers.models.cohere import cohere_model_forward + convert_forward(model, + module.CohereModel, + cohere_model_forward) + convert_forward(model, + module.CohereAttention, + cohere_attention_forward) + convert_forward(model, + module.CohereLayerNorm, + llama_rms_norm_forward) + convert_forward(model, + module.CohereMLP, + llama_mlp_forward) elif model.config.model_type == "aquila": modeling_module_name = model.__class__.__module__ module = importlib.import_module(modeling_module_name) diff --git a/python/llm/src/ipex_llm/transformers/models/cohere.py b/python/llm/src/ipex_llm/transformers/models/cohere.py new file mode 100644 index 00000000..f5404665 --- /dev/null +++ b/python/llm/src/ipex_llm/transformers/models/cohere.py @@ -0,0 +1,457 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# Some parts of this file is adapted from +# https://github.com/huggingface/transformers/blob/main/src/transformers/models/cohere/modeling_cohere.py + +# coding=utf-8 +# Copyright 2024 Cohere team. All rights reserved. +# +# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX +# and OPT implementations in this library. It has been modified from its +# original forms to accommodate minor architectural differences compared +# to GPT-NeoX and OPT used by the Meta AI team that trained the model. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# This file is based on the LLama model definition file in transformers + +"""PyTorch Cohere model.""" +import math +import torch +import torch.nn.functional as F +import torch.nn as nn +import torch.utils.checkpoint +from typing import Optional, Tuple, List +from ipex_llm.transformers.models.llama import repeat_kv +from ipex_llm.transformers.models.utils import extend_kv_cache, append_kv_cache +from transformers.models.cohere.modeling_cohere import apply_rotary_pos_emb +from ipex_llm.transformers.models.utils import is_enough_kv_cache_room_4_36 +from ipex_llm.transformers.models.utils import use_decoding_fast_path +from ipex_llm.transformers.models.utils import use_flash_attention, use_esimd_sdp +from transformers.models.cohere.modeling_cohere import apply_rotary_pos_emb +from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache +from ipex_llm.transformers.kv import DynamicFp8Cache +from ipex_llm.transformers.models.qwen2 import should_use_fuse_rope +from transformers.modeling_outputs import BaseModelOutputWithPast +from ipex_llm.utils.common import invalidInputError +try: + from transformers.cache_utils import Cache, DynamicCache +except ImportError: + Cache = Tuple[torch.Tensor] + +KV_CACHE_ALLOC_BLOCK_LENGTH = 256 + + +def cohere_model_forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, +): + use_cache = use_cache if use_cache is not None \ + else self.config.use_cache + if use_cache and use_quantize_kv_cache(self.layers[0].mlp.up_proj, input_ids): + if not isinstance(past_key_values, DynamicFp8Cache): + past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values) + output_attentions = output_attentions if output_attentions is not None \ + else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None + else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + invalidInputError(False, + "You cannot specify both input_ids and inputs_embeds at the same time") + + if self.gradient_checkpointing and self.training and use_cache: + invalidInputError(False, + "`use_cache=True` is incompatible " + "with gradient checkpointing. Setting `use_cache=False`.") + use_cache = False + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + + past_seen_tokens = 0 + if use_cache: # kept for BC (cache positions) + if not isinstance(past_key_values, Cache): + past_key_values = DynamicCache.from_legacy_cache(past_key_values) + past_seen_tokens = past_key_values.get_seq_length() + + if cache_position is None: + if isinstance(past_key_values, Cache): + invalidInputError(False, "cache_position is a required argument when using Cache.") + cache_position = torch.arange( + past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device + ) + + if position_ids is None: + position_ids = cache_position.unsqueeze(0) + + causal_mask = self._update_causal_mask(attention_mask, + inputs_embeds, cache_position, past_seen_tokens) + + # embed positions + hidden_states = inputs_embeds + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + next_decoder_cache = None + + for decoder_layer in self.layers: + if output_hidden_states: + all_hidden_states += (hidden_states,) + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + causal_mask, + position_ids, + past_key_values, + output_attentions, + use_cache, + cache_position, + ) + else: + # ipex-llm changes + curr_device = decoder_layer.input_layernorm.weight.device + if causal_mask is not None: + causal_mask = causal_mask.to(curr_device) + if position_ids is not None: + position_ids = position_ids.to(curr_device) + # ipex-llm changes end + layer_outputs = decoder_layer( + hidden_states, + attention_mask=causal_mask, + position_ids=position_ids, + past_key_value=past_key_values, + output_attentions=output_attentions, + use_cache=use_cache, + cache_position=cache_position, + ) + + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache = layer_outputs[2 if output_attentions else 1] + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + hidden_states = self.norm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + next_cache = next_decoder_cache if use_cache else None + if not return_dict: + return tuple(v for v in [hidden_states, next_cache, + all_hidden_states, all_self_attns] if v is not None) + return BaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + ) + + +def cohere_attention_forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: bool = False, + use_cache: bool = False, + cache_position: Optional[torch.LongTensor] = None, + **kwargs, +) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + if use_quantize_kv_cache(self.q_proj, hidden_states): + forward_function = cohere_attention_forward_quantized + else: + forward_function = cohere_attention_forward_origin + return forward_function( + self=self, + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + cache_position=cache_position, + **kwargs, + ) + + +def cohere_attention_forward_quantized( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: bool = False, + use_cache: bool = False, + cache_position: Optional[torch.LongTensor] = None, + **kwargs, +) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + bsz, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim) + key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim) + if self.use_qk_norm: + query_states = self.q_norm(query_states) + key_states = self.k_norm(key_states) + + query_states = query_states.transpose(1, 2) + key_states = key_states.transpose(1, 2) + value_states = value_states.view(bsz, q_len, + self.num_key_value_heads, self.head_dim).transpose(1, 2) + + past_key_value = getattr(self, "past_key_value", past_key_value) + kv_seq_len = key_states.shape[-2] + if past_key_value is not None: + kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) + cos, sin = self.rotary_emb(value_states, position_ids) + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) + + if past_key_value is not None: + # sin and cos are specific to RoPE models; position_ids needed for the static cache + cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} + key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, + cache_kwargs, new_layout=True) + if q_len == 1 and query_states.device.type == 'xpu' and not self.training \ + and not hidden_states.requires_grad: + import linear_q4_0 + attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states, + attention_mask) + attn_weights = None + else: + key_states, value_states = restore_fp8_kv_cache(key_states, + value_states, query_states.dtype) + key_states = repeat_kv(key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + + attn_weights = torch.matmul(query_states, + key_states.transpose(2, 3)) / math.sqrt(self.head_dim) + + if attention_mask is not None: # no matter the length, we just slice it + causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] + attn_weights = attn_weights + causal_mask + + # upcast attention to fp32 + attn_weights = nn.functional.softmax(attn_weights, + dim=-1, dtype=torch.float32).to(query_states.dtype) + attn_weights = nn.functional.dropout(attn_weights, + p=self.attention_dropout, training=self.training) + attn_output = torch.matmul(attn_weights, value_states) + + invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim), + "`attn_output` should be of size " + f"{(bsz, self.num_heads, q_len, self.head_dim)}," + f" but is {attn_output.size()}") + + attn_output = attn_output.transpose(1, 2).contiguous() + + attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) + + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + +def cohere_attention_forward_origin( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: bool = False, + use_cache: bool = False, + cache_position: Optional[torch.LongTensor] = None, +) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + bsz, q_len, _ = hidden_states.size() + device = hidden_states.device + use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids) + enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx) + decoding_fast_path = use_decoding_fast_path(self.q_proj, + use_fuse_rope, + enough_kv_room, + bsz * q_len) + if decoding_fast_path: + hidden_states = hidden_states.view(1, -1) + cache_k = past_key_value.key_cache[self.layer_idx] + cache_v = past_key_value.value_cache[self.layer_idx] + kv_seq_len = cache_k.shape[-2] + import linear_q4_0 + query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states, + self.q_proj.weight, + self.k_proj.weight, + self.v_proj.weight, + position_ids, + cache_k, cache_v, + self.q_proj.weight.qtype, + self.v_proj.weight.qtype, + kv_seq_len, + self.head_dim, + self.rotary_emb.base,) + kv_seq_len += 1 + # update past_key_value's seem_tokens and kv caches. + if self.layer_idx == 0: + past_key_value._seen_tokens = kv_seq_len + past_key_value.key_cache[self.layer_idx] = key_states + past_key_value.value_cache[self.layer_idx] = value_states + else: + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim) + key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim) + if self.use_qk_norm: + query_states = self.q_norm(query_states) + key_states = self.k_norm(key_states) + + query_states = query_states.transpose(1, 2) + key_states = key_states.transpose(1, 2) + value_states = value_states.view(bsz, q_len, self.num_key_value_heads, + self.head_dim).transpose(1, 2) + + past_key_value = getattr(self, "past_key_value", past_key_value) + kv_seq_len = key_states.shape[-2] + if past_key_value is not None: + if self.layer_idx is None: + invalidInputError( + False, + "The cache structure has changed since version v4.36. " + f"If you are using {self.__class__.__name__} " + "for auto-regressive decoding with k/v caching, " + "please make sure to initialize the attention class with a layer index." + ) + kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) + cos, sin = self.rotary_emb(value_states, position_ids) + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) + + if past_key_value is not None: + if self.layer_idx == 0: + past_key_value._seen_tokens += key_states.shape[-2] + + if len(past_key_value.key_cache) <= self.layer_idx: + past_key_value.key_cache.append(key_states) + past_key_value.value_cache.append(value_states) + else: + cache_k = past_key_value.key_cache[self.layer_idx] + cache_v = past_key_value.value_cache[self.layer_idx] + + if not enough_kv_room: + # allocate new + new_c_k, new_c_v = extend_kv_cache(bsz, + self.num_key_value_heads, # Support GQA + self.head_dim, + cache_k.size(2), + kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH, + dtype=cache_k.dtype, + device=device) + + new_c_k[:] = cache_k + new_c_v[:] = cache_v + cache_k = new_c_k + cache_v = new_c_v + + key_states, value_states = append_kv_cache(cache_k, + cache_v, + key_states, + value_states) + + # update past_key_value + past_key_value.key_cache[self.layer_idx] = key_states + past_key_value.value_cache[self.layer_idx] = value_states + + key_states = repeat_kv(key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + + if not self.training and not hidden_states.requires_grad and \ + use_flash_attention(query_states, key_states, attention_mask): + attn_output = F.scaled_dot_product_attention(query_states.to(device, dtype=torch.float16), + key_states.to(device, dtype=torch.float16), + value_states.to(device, dtype=torch.float16), + is_causal=True) + attn_weights = None + elif not self.training and not hidden_states.requires_grad and \ + use_esimd_sdp(q_len, key_states.shape[2], self.head_dim, query_states): + import linear_q4_0 + attn_output = linear_q4_0.sdp_fp16(query_states, key_states, value_states, attention_mask) + attn_output = attn_output.view(query_states.shape) + attn_weights = None + else: + attn_weights = torch.matmul(query_states, + key_states.transpose(2, 3)) / math.sqrt(self.head_dim) + + if attention_mask is not None: # no matter the length, we just slice it + causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] + attn_weights = attn_weights + causal_mask + + # upcast attention to fp32 + attn_weights = nn.functional.softmax(attn_weights, + dim=-1, dtype=torch.float32).to(query_states.dtype) + attn_weights = nn.functional.dropout(attn_weights, + p=self.attention_dropout, training=self.training) + attn_output = torch.matmul(attn_weights, value_states) + + invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim), + "`attn_output` should be of size " + f"{(bsz, self.num_heads, q_len, self.head_dim)}," + f" but is {attn_output.size()}") + + attn_output = attn_output.transpose(1, 2).contiguous() + + attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) + + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output.to(hidden_states.dtype), attn_weights, past_key_value