Make llama attention stateless (#8928)

* Make llama attention stateless

* fix style

* fix chatglm

* fix chatglm xpu
This commit is contained in:
Yang Wang 2023-09-12 09:21:50 +08:00 committed by GitHub
parent e62eda74b8
commit 16761c58be
2 changed files with 60 additions and 54 deletions

View file

@ -22,6 +22,7 @@ import torch
import torch.utils.checkpoint import torch.utils.checkpoint
import torch.nn.functional as F import torch.nn.functional as F
from typing import Optional, Tuple from typing import Optional, Tuple
from bigdl.llm.transformers.models.utils import create_kv_cache, append_kv_cache
def rotate_half(x): def rotate_half(x):
@ -58,43 +59,43 @@ def attention_fn(
# query_layer = query_layer.permute(1, 2, 0, 3) # query_layer = query_layer.permute(1, 2, 0, 3)
cur_length, batch_size = query_layer.shape[0], query_layer.shape[1] cur_length, batch_size = query_layer.shape[0], query_layer.shape[1]
device = query_layer.device
if layer_past is not None: if layer_past is not None:
past_key, past_value = layer_past[0], layer_past[1] cache_k, cache_v = layer_past[0], layer_past[1]
past_length = past_key.size(2) cache_k = cache_k.permute(1, 2, 0, 3)
if past_length + cur_length > self.max_cache_length: cache_v = cache_v.permute(1, 2, 0, 3)
self.max_cache_length = past_length + cur_length + KV_CACHE_ALLOC_BLOCK_LENGTH past_length = cache_k.size(2)
self.kv_cache = (torch.empty(batch_size, if cache_k.stride()[1] <= cache_k.size(2) * cache_k.size(3):
self.num_attention_heads, max_cache_length = past_length + cur_length + KV_CACHE_ALLOC_BLOCK_LENGTH
self.max_cache_length, new_cache_k, new_cache_v = create_kv_cache(batch_size,
self.hidden_size_per_attention_head,), self.num_attention_heads_per_partition,
torch.empty(batch_size, self.hidden_size_per_attention_head,
self.num_attention_heads, past_length,
self.max_cache_length, max_cache_length,
self.hidden_size_per_attention_head,)) dtype=query_layer.dtype,
self.kv_cache[0][:, :, :past_length, :] = past_key device=device)
self.kv_cache[1][:, :, :past_length, :] = past_value new_cache_k[:] = cache_k
new_cache_v[:] = cache_v
self.kv_cache[0][:, :, past_length:past_length + cur_length, :] = key_layer key_layer, value_layer = append_kv_cache(cache_k, cache_v, key_layer, value_layer)
self.kv_cache[1][:, :, past_length:past_length + cur_length, :] = value_layer
key_layer = self.kv_cache[0][:, :, :past_length + cur_length, :]
value_layer = self.kv_cache[1][:, :, :past_length + cur_length, :]
elif use_cache: elif use_cache:
self.max_cache_length = max(KV_CACHE_ALLOC_MIN_LENGTH, cur_length) \ max_cache_length = max(KV_CACHE_ALLOC_MIN_LENGTH, cur_length) \
+ KV_CACHE_ALLOC_BLOCK_LENGTH + KV_CACHE_ALLOC_BLOCK_LENGTH
self.kv_cache = (torch.empty(batch_size, self.num_attention_heads, key_cache, value_cache = create_kv_cache(batch_size, self.num_attention_heads_per_partition,
self.max_cache_length, self.hidden_size_per_attention_head,), self.hidden_size_per_attention_head, cur_length,
torch.empty(batch_size, self.num_attention_heads, max_cache_length,
self.max_cache_length, self.hidden_size_per_attention_head,)) dtype=query_layer.dtype, device=device)
self.kv_cache[0][:, :, :cur_length, :] = key_layer key_cache[:] = key_layer
self.kv_cache[1][:, :, :cur_length, :] = value_layer value_cache[:] = value_layer
key_layer = key_cache
value_layer = value_cache
# seqlen, batch, num_attention_heads, hidden_size_per_attention_head # seqlen, batch, num_attention_heads, hidden_size_per_attention_head
b, nh, seq_len, hidden_size = key_layer.shape b, nh, seq_len, hidden_size = key_layer.shape
if use_cache: if use_cache:
present = (key_layer, value_layer) present = (key_layer.permute(2, 0, 1, 3), value_layer.permute(2, 0, 1, 3))
else: else:
present = None present = None
@ -168,6 +169,7 @@ def attention_fn(
matmul_result = torch.empty( matmul_result = torch.empty(
output_size[0] * output_size[1], output_size[0] * output_size[1],
output_size[2], output_size[3], dtype=query_layer.dtype, output_size[2], output_size[3], dtype=query_layer.dtype,
device=query_layer.device
) )
torch.baddbmm( torch.baddbmm(
@ -217,7 +219,8 @@ def attention_fn(
# matmul: [b * np, sq, hn] # matmul: [b * np, sq, hn]
context_layer = torch.empty( context_layer = torch.empty(
output_size[0] * output_size[1], output_size[0] * output_size[1],
output_size[2], value_layer.size(-1), dtype=value_layer.dtype,) output_size[2], value_layer.size(-1), dtype=value_layer.dtype,
device=query_layer.device)
torch.bmm(attention_probs, value_layer, out=context_layer) torch.bmm(attention_probs, value_layer, out=context_layer)
# change view [b, np, sq, hn] # change view [b, np, sq, hn]

View file

@ -37,6 +37,7 @@ from typing import Optional, Tuple
import math import math
import torch.nn.functional as F import torch.nn.functional as F
from bigdl.llm.utils.common import invalidInputError from bigdl.llm.utils.common import invalidInputError
from bigdl.llm.transformers.models.utils import create_kv_cache, append_kv_cache
def rotate_half(x): def rotate_half(x):
@ -125,35 +126,37 @@ def llama_attention_forward_4_31(
if past_key_value is not None: if past_key_value is not None:
# reuse k, v, self_attention # reuse k, v, self_attention
# key_states = torch.cat([past_key_value[0], key_states], dim=2) cache_k = past_key_value[0]
# value_states = torch.cat([past_key_value[1], value_states], dim=2) cache_v = past_key_value[1]
if kv_seq_len > self.max_cache_length: if cache_k.stride()[1] <= cache_k.size(2) * cache_k.size(3):
new_cache_key = torch.empty(bsz, self.num_heads, # allocate new
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH, self.head_dim, new_cache_k, new_cache_v = create_kv_cache(bsz,
self.num_heads,
self.head_dim,
cache_k.size(2),
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
dtype=cache_k.dtype,
device=device) device=device)
new_cache_key[:, :, :kv_seq_len-1, :] = self.kv_cache[0][:, :, :kv_seq_len-1, :] new_cache_k[:] = cache_k
new_cache_v[:] = cache_v
cache_k = new_cache_k
cache_v = new_cache_v
new_cache_value = torch.empty(bsz, self.num_heads, key_states, value_states = append_kv_cache(cache_k, cache_v, key_states, value_states)
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH, self.head_dim,
device=device)
new_cache_value[:, :, :kv_seq_len-1, :] = self.kv_cache[1][:, :, :kv_seq_len-1, :]
self.kv_cache = (new_cache_key, new_cache_value)
self.max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
self.kv_cache[0][:, :, kv_seq_len-1:kv_seq_len, :] = key_states
self.kv_cache[1][:, :, kv_seq_len-1:kv_seq_len, :] = value_states
key_states = self.kv_cache[0][:, :, :kv_seq_len, :]
value_states = self.kv_cache[1][:, :, :kv_seq_len, :]
elif use_cache: elif use_cache:
# first token case max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
self.max_cache_length = max(min(self.max_position_embeddings, 2 * kv_seq_len), new_key_states, new_value_states = create_kv_cache(bsz,
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH) self.num_heads,
self.kv_cache = (torch.empty(bsz, self.num_heads, self.max_cache_length, self.head_dim, self.head_dim,
dtype=key_states.dtype, device=device), kv_seq_len,
torch.empty(bsz, self.num_heads, self.max_cache_length, self.head_dim, max_cache_length,
dtype=key_states.dtype, device=device)) dtype=key_states.dtype,
self.kv_cache[0][:, :, :kv_seq_len, :] = key_states device=device)
self.kv_cache[1][:, :, :kv_seq_len, :] = value_states new_key_states[:] = key_states
new_value_states[:] = value_states
key_states = new_key_states
value_states = new_value_states
past_key_value = (key_states, value_states) if use_cache else None past_key_value = (key_states, value_states) if use_cache else None