MiniCPM-V-2 & MiniCPM-Llama3-V-2_5 example updates (#11988)
* minicpm example updates * --stream
This commit is contained in:
parent
2e54f4402b
commit
164f47adbd
5 changed files with 143 additions and 60 deletions
|
|
@ -5,7 +5,7 @@ In this directory, you will find examples on how you could apply IPEX-LLM INT4 o
|
|||
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
|
||||
|
||||
## Example: Predict Tokens using `chat()` API
|
||||
In the example [generate.py](./generate.py), we show a basic use case for a MiniCPM-Llama3-V-2_5 model to predict the next N tokens using `chat()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
|
||||
In the example [chat.py](./chat.py), we show a basic use case for a MiniCPM-Llama3-V-2_5 model to predict the next N tokens using `chat()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
|
||||
### 1. Install
|
||||
#### 1.1 Installation on Linux
|
||||
We suggest using conda to manage environment:
|
||||
|
|
@ -106,15 +106,20 @@ set SYCL_CACHE_PERSISTENT=1
|
|||
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
|
||||
### 4. Running examples
|
||||
|
||||
- chat without streaming mode:
|
||||
```
|
||||
python ./generate.py --prompt 'What is in the image?'
|
||||
python ./chat.py --prompt 'What is in the image?'
|
||||
```
|
||||
- chat in streaming mode:
|
||||
```
|
||||
python ./chat.py --prompt 'What is in the image?' --stream
|
||||
```
|
||||
|
||||
Arguments info:
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM-Llama3-V-2_5 (e.g. `openbmb/MiniCPM-Llama3-V-2_5`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-Llama3-V-2_5'`.
|
||||
- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`.
|
||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`.
|
||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||
- `--stream`: flag to chat in streaming mode
|
||||
|
||||
#### Sample Output
|
||||
|
||||
|
|
@ -122,12 +127,21 @@ Arguments info:
|
|||
|
||||
```log
|
||||
Inference time: xxxx s
|
||||
-------------------- Input --------------------
|
||||
-------------------- Input Image --------------------
|
||||
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
|
||||
-------------------- Prompt --------------------
|
||||
-------------------- Input Prompt --------------------
|
||||
What is in the image?
|
||||
-------------------- Output --------------------
|
||||
The image features a young child holding a white teddy bear. The teddy bear is dressed in a pink outfit. The child appears to be outdoors, with a stone wall and some red flowers in the background.
|
||||
-------------------- Chat Output --------------------
|
||||
The image features a young child holding a white teddy bear. The teddy bear is dressed in a pink dress with a ribbon on it. The child appears to be smiling and enjoying the moment.
|
||||
```
|
||||
```log
|
||||
Inference time: xxxx s
|
||||
-------------------- Input Image --------------------
|
||||
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
|
||||
-------------------- Input Prompt --------------------
|
||||
图片里有什么?
|
||||
-------------------- Chat Output --------------------
|
||||
图片中有一个小孩,手里拿着一个白色的玩具熊。这个孩子看起来很开心,正在微笑并与玩具互动。背景包括红色的花朵和石墙,为这个场景增添了色彩和质感。
|
||||
```
|
||||
|
||||
The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)):
|
||||
|
|
|
|||
|
|
@ -14,10 +14,12 @@
|
|||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
import os
|
||||
import time
|
||||
import argparse
|
||||
import requests
|
||||
import torch
|
||||
from PIL import Image
|
||||
from ipex_llm.transformers import AutoModel
|
||||
from transformers import AutoTokenizer
|
||||
|
|
@ -33,8 +35,8 @@ if __name__ == '__main__':
|
|||
help='The URL or path to the image to infer')
|
||||
parser.add_argument('--prompt', type=str, default="What is in the image?",
|
||||
help='Prompt to infer')
|
||||
parser.add_argument('--n-predict', type=int, default=32,
|
||||
help='Max tokens to predict')
|
||||
parser.add_argument('--stream', action='store_true',
|
||||
help='Whether to chat in streaming mode')
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
|
|
@ -45,11 +47,12 @@ if __name__ == '__main__':
|
|||
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
|
||||
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
|
||||
model = AutoModel.from_pretrained(model_path,
|
||||
load_in_4bit=True,
|
||||
optimize_model=False,
|
||||
load_in_low_bit="sym_int4",
|
||||
optimize_model=True,
|
||||
trust_remote_code=True,
|
||||
use_cache=True)
|
||||
model = model.half().to(device='xpu')
|
||||
use_cache=True,
|
||||
modules_to_not_convert=["vpm", "resampler"])
|
||||
model = model.half().to('xpu')
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
||||
trust_remote_code=True)
|
||||
model.eval()
|
||||
|
|
@ -61,23 +64,45 @@ if __name__ == '__main__':
|
|||
image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')
|
||||
|
||||
# Generate predicted tokens
|
||||
# here the prompt tuning refers to https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5/blob/main/README.md
|
||||
msgs = [{'role': 'user', 'content': args.prompt}]
|
||||
# here the prompt tuning refers to https://huggingface.co/openbmb/MiniCPM-V-2_6/blob/main/README.md
|
||||
msgs = [{'role': 'user', 'content': [image, args.prompt]}]
|
||||
|
||||
# ipex_llm model needs a warmup, then inference time can be accurate
|
||||
model.chat(
|
||||
image=None,
|
||||
msgs=msgs,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
|
||||
if args.stream:
|
||||
res = model.chat(
|
||||
image=None,
|
||||
msgs=msgs,
|
||||
tokenizer=tokenizer,
|
||||
stream=True
|
||||
)
|
||||
|
||||
print('-'*20, 'Input Image', '-'*20)
|
||||
print(image_path)
|
||||
print('-'*20, 'Input Prompt', '-'*20)
|
||||
print(args.prompt)
|
||||
print('-'*20, 'Stream Chat Output', '-'*20)
|
||||
for new_text in res:
|
||||
print(new_text, flush=True, end='')
|
||||
else:
|
||||
st = time.time()
|
||||
res = model.chat(
|
||||
image=image,
|
||||
image=None,
|
||||
msgs=msgs,
|
||||
context=None,
|
||||
tokenizer=tokenizer,
|
||||
sampling=False,
|
||||
temperature=0.7
|
||||
)
|
||||
torch.xpu.synchronize()
|
||||
end = time.time()
|
||||
|
||||
print(f'Inference time: {end-st} s')
|
||||
print('-'*20, 'Input', '-'*20)
|
||||
print('-'*20, 'Input Image', '-'*20)
|
||||
print(image_path)
|
||||
print('-'*20, 'Prompt', '-'*20)
|
||||
print('-'*20, 'Input Prompt', '-'*20)
|
||||
print(args.prompt)
|
||||
output_str = res
|
||||
print('-'*20, 'Output', '-'*20)
|
||||
print(output_str)
|
||||
print('-'*20, 'Chat Output', '-'*20)
|
||||
print(res)
|
||||
|
|
@ -5,7 +5,7 @@ In this directory, you will find examples on how you could apply IPEX-LLM INT4 o
|
|||
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
|
||||
|
||||
## Example: Predict Tokens using `chat()` API
|
||||
In the example [generate.py](./generate.py), we show a basic use case for a MiniCPM-V-2 model to predict the next N tokens using `chat()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
|
||||
In the example [chat.py](./chat.py), we show a basic use case for a MiniCPM-V-2 model to predict the next N tokens using `chat()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
|
||||
### 1. Install
|
||||
#### 1.1 Installation on Linux
|
||||
We suggest using conda to manage environment:
|
||||
|
|
@ -106,15 +106,20 @@ set SYCL_CACHE_PERSISTENT=1
|
|||
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
|
||||
### 4. Running examples
|
||||
|
||||
- chat without streaming mode:
|
||||
```
|
||||
python ./generate.py --prompt 'What is in the image?'
|
||||
python ./chat.py --prompt 'What is in the image?'
|
||||
```
|
||||
- chat in streaming mode:
|
||||
```
|
||||
python ./chat.py --prompt 'What is in the image?' --stream
|
||||
```
|
||||
|
||||
Arguments info:
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM-V-2 (e.g. `openbmb/MiniCPM-V-2`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-V-2'`.
|
||||
- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`.
|
||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`.
|
||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||
- `--stream`: flag to chat in streaming mode
|
||||
|
||||
#### Sample Output
|
||||
|
||||
|
|
@ -122,12 +127,20 @@ Arguments info:
|
|||
|
||||
```log
|
||||
Inference time: xxxx s
|
||||
-------------------- Input --------------------
|
||||
-------------------- Input Image --------------------
|
||||
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
|
||||
-------------------- Prompt --------------------
|
||||
-------------------- Input Prompt --------------------
|
||||
What is in the image?
|
||||
-------------------- Output --------------------
|
||||
In the image, there is a young child holding a teddy bear. The teddy bear appears to be dressed in a pink tutu. The child is also wearing a red and white striped dress. The background of the image includes a stone wall and some red flowers.
|
||||
-------------------- Chat Output --------------------
|
||||
In the image, there is a young child holding a teddy bear. The teddy bear is dressed in a pink tutu. The child is also wearing a red and white striped dress. The background of the image features a stone wall and some red flowers.
|
||||
```
|
||||
```log
|
||||
-------------------- Input Image --------------------
|
||||
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
|
||||
-------------------- Input Prompt --------------------
|
||||
图片里有什么?
|
||||
-------------------- Chat Output --------------------
|
||||
图中是一个小女孩,她手里拿着一只粉白相间的泰迪熊。
|
||||
```
|
||||
|
||||
The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)):
|
||||
|
|
|
|||
|
|
@ -15,6 +15,7 @@
|
|||
#
|
||||
|
||||
|
||||
|
||||
from typing import List, Tuple, Optional, Union
|
||||
import math
|
||||
import timm
|
||||
|
|
@ -110,6 +111,7 @@ import os
|
|||
import time
|
||||
import argparse
|
||||
import requests
|
||||
import torch
|
||||
from PIL import Image
|
||||
from ipex_llm.transformers import AutoModel
|
||||
from transformers import AutoTokenizer
|
||||
|
|
@ -125,8 +127,8 @@ if __name__ == '__main__':
|
|||
help='The URL or path to the image to infer')
|
||||
parser.add_argument('--prompt', type=str, default="What is in the image?",
|
||||
help='Prompt to infer')
|
||||
parser.add_argument('--n-predict', type=int, default=32,
|
||||
help='Max tokens to predict')
|
||||
parser.add_argument('--stream', action='store_true',
|
||||
help='Whether to chat in streaming mode')
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
|
|
@ -140,9 +142,9 @@ if __name__ == '__main__':
|
|||
load_in_low_bit="asym_int4",
|
||||
optimize_model=True,
|
||||
trust_remote_code=True,
|
||||
modules_to_not_convert=["vpm", "resampler", "lm_head"],
|
||||
use_cache=True)
|
||||
model = model.half().to(device='xpu')
|
||||
use_cache=True,
|
||||
modules_to_not_convert=["vpm", "resampler"])
|
||||
model = model.half().to('xpu')
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
||||
trust_remote_code=True)
|
||||
model.eval()
|
||||
|
|
@ -156,6 +158,34 @@ if __name__ == '__main__':
|
|||
# Generate predicted tokens
|
||||
# here the prompt tuning refers to https://huggingface.co/openbmb/MiniCPM-V-2/blob/main/README.md
|
||||
msgs = [{'role': 'user', 'content': args.prompt}]
|
||||
|
||||
# ipex_llm model needs a warmup, then inference time can be accurate
|
||||
res, context, _ = model.chat(
|
||||
image=image,
|
||||
msgs=msgs,
|
||||
context=None,
|
||||
tokenizer=tokenizer,
|
||||
sampling=False,
|
||||
temperature=0.7
|
||||
)
|
||||
if args.stream:
|
||||
res, context, _ = model.chat(
|
||||
image=image,
|
||||
msgs=msgs,
|
||||
context=None,
|
||||
tokenizer=tokenizer,
|
||||
sampling=False,
|
||||
temperature=0.7
|
||||
)
|
||||
|
||||
print('-'*20, 'Input Image', '-'*20)
|
||||
print(image_path)
|
||||
print('-'*20, 'Input Prompt', '-'*20)
|
||||
print(args.prompt)
|
||||
print('-'*20, 'Stream Chat Output', '-'*20)
|
||||
for new_text in res:
|
||||
print(new_text, flush=True, end='')
|
||||
else:
|
||||
st = time.time()
|
||||
res, context, _ = model.chat(
|
||||
image=image,
|
||||
|
|
@ -165,12 +195,13 @@ if __name__ == '__main__':
|
|||
sampling=False,
|
||||
temperature=0.7
|
||||
)
|
||||
torch.xpu.synchronize()
|
||||
end = time.time()
|
||||
|
||||
print(f'Inference time: {end-st} s')
|
||||
print('-'*20, 'Input', '-'*20)
|
||||
print('-'*20, 'Input Image', '-'*20)
|
||||
print(image_path)
|
||||
print('-'*20, 'Prompt', '-'*20)
|
||||
print('-'*20, 'Input Prompt', '-'*20)
|
||||
print(args.prompt)
|
||||
output_str = res
|
||||
print('-'*20, 'Output', '-'*20)
|
||||
print(output_str)
|
||||
print('-'*20, 'Chat Output', '-'*20)
|
||||
print(res)
|
||||
|
|
@ -108,11 +108,11 @@ set SYCL_CACHE_PERSISTENT=1
|
|||
|
||||
- chat without streaming mode:
|
||||
```
|
||||
python ./generate.py --prompt 'What is in the image?'
|
||||
python ./chat.py --prompt 'What is in the image?'
|
||||
```
|
||||
- chat in streaming mode:
|
||||
```
|
||||
python ./generate.py --prompt 'What is in the image?' --stream
|
||||
python ./chat.py --prompt 'What is in the image?' --stream
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
|
|
|
|||
Loading…
Reference in a new issue