MiniCPM-V-2 & MiniCPM-Llama3-V-2_5 example updates (#11988)

* minicpm example updates

* --stream
This commit is contained in:
Jinhe 2024-09-03 17:02:06 +08:00 committed by GitHub
parent 2e54f4402b
commit 164f47adbd
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 143 additions and 60 deletions

View file

@ -5,7 +5,7 @@ In this directory, you will find examples on how you could apply IPEX-LLM INT4 o
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
## Example: Predict Tokens using `chat()` API ## Example: Predict Tokens using `chat()` API
In the example [generate.py](./generate.py), we show a basic use case for a MiniCPM-Llama3-V-2_5 model to predict the next N tokens using `chat()` API, with IPEX-LLM INT4 optimizations on Intel GPUs. In the example [chat.py](./chat.py), we show a basic use case for a MiniCPM-Llama3-V-2_5 model to predict the next N tokens using `chat()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
### 1. Install ### 1. Install
#### 1.1 Installation on Linux #### 1.1 Installation on Linux
We suggest using conda to manage environment: We suggest using conda to manage environment:
@ -106,15 +106,20 @@ set SYCL_CACHE_PERSISTENT=1
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile. > For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples ### 4. Running examples
- chat without streaming mode:
``` ```
python ./generate.py --prompt 'What is in the image?' python ./chat.py --prompt 'What is in the image?'
```
- chat in streaming mode:
```
python ./chat.py --prompt 'What is in the image?' --stream
``` ```
Arguments info: Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM-Llama3-V-2_5 (e.g. `openbmb/MiniCPM-Llama3-V-2_5`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-Llama3-V-2_5'`. - `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM-Llama3-V-2_5 (e.g. `openbmb/MiniCPM-Llama3-V-2_5`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-Llama3-V-2_5'`.
- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`. - `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`. - `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. - `--stream`: flag to chat in streaming mode
#### Sample Output #### Sample Output
@ -122,12 +127,21 @@ Arguments info:
```log ```log
Inference time: xxxx s Inference time: xxxx s
-------------------- Input -------------------- -------------------- Input Image --------------------
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
-------------------- Prompt -------------------- -------------------- Input Prompt --------------------
What is in the image? What is in the image?
-------------------- Output -------------------- -------------------- Chat Output --------------------
The image features a young child holding a white teddy bear. The teddy bear is dressed in a pink outfit. The child appears to be outdoors, with a stone wall and some red flowers in the background. The image features a young child holding a white teddy bear. The teddy bear is dressed in a pink dress with a ribbon on it. The child appears to be smiling and enjoying the moment.
```
```log
Inference time: xxxx s
-------------------- Input Image --------------------
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
-------------------- Input Prompt --------------------
图片里有什么?
-------------------- Chat Output --------------------
图片中有一个小孩,手里拿着一个白色的玩具熊。这个孩子看起来很开心,正在微笑并与玩具互动。背景包括红色的花朵和石墙,为这个场景增添了色彩和质感。
``` ```
The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)): The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)):

View file

@ -14,10 +14,12 @@
# limitations under the License. # limitations under the License.
# #
import os import os
import time import time
import argparse import argparse
import requests import requests
import torch
from PIL import Image from PIL import Image
from ipex_llm.transformers import AutoModel from ipex_llm.transformers import AutoModel
from transformers import AutoTokenizer from transformers import AutoTokenizer
@ -33,8 +35,8 @@ if __name__ == '__main__':
help='The URL or path to the image to infer') help='The URL or path to the image to infer')
parser.add_argument('--prompt', type=str, default="What is in the image?", parser.add_argument('--prompt', type=str, default="What is in the image?",
help='Prompt to infer') help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32, parser.add_argument('--stream', action='store_true',
help='Max tokens to predict') help='Whether to chat in streaming mode')
args = parser.parse_args() args = parser.parse_args()
model_path = args.repo_id_or_model_path model_path = args.repo_id_or_model_path
@ -45,11 +47,12 @@ if __name__ == '__main__':
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function. # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU. # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
model = AutoModel.from_pretrained(model_path, model = AutoModel.from_pretrained(model_path,
load_in_4bit=True, load_in_low_bit="sym_int4",
optimize_model=False, optimize_model=True,
trust_remote_code=True, trust_remote_code=True,
use_cache=True) use_cache=True,
model = model.half().to(device='xpu') modules_to_not_convert=["vpm", "resampler"])
model = model.half().to('xpu')
tokenizer = AutoTokenizer.from_pretrained(model_path, tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True) trust_remote_code=True)
model.eval() model.eval()
@ -61,23 +64,45 @@ if __name__ == '__main__':
image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB') image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')
# Generate predicted tokens # Generate predicted tokens
# here the prompt tuning refers to https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5/blob/main/README.md # here the prompt tuning refers to https://huggingface.co/openbmb/MiniCPM-V-2_6/blob/main/README.md
msgs = [{'role': 'user', 'content': args.prompt}] msgs = [{'role': 'user', 'content': [image, args.prompt]}]
# ipex_llm model needs a warmup, then inference time can be accurate
model.chat(
image=None,
msgs=msgs,
tokenizer=tokenizer,
)
if args.stream:
res = model.chat(
image=None,
msgs=msgs,
tokenizer=tokenizer,
stream=True
)
print('-'*20, 'Input Image', '-'*20)
print(image_path)
print('-'*20, 'Input Prompt', '-'*20)
print(args.prompt)
print('-'*20, 'Stream Chat Output', '-'*20)
for new_text in res:
print(new_text, flush=True, end='')
else:
st = time.time() st = time.time()
res = model.chat( res = model.chat(
image=image, image=None,
msgs=msgs, msgs=msgs,
context=None,
tokenizer=tokenizer, tokenizer=tokenizer,
sampling=False,
temperature=0.7
) )
torch.xpu.synchronize()
end = time.time() end = time.time()
print(f'Inference time: {end-st} s') print(f'Inference time: {end-st} s')
print('-'*20, 'Input', '-'*20) print('-'*20, 'Input Image', '-'*20)
print(image_path) print(image_path)
print('-'*20, 'Prompt', '-'*20) print('-'*20, 'Input Prompt', '-'*20)
print(args.prompt) print(args.prompt)
output_str = res print('-'*20, 'Chat Output', '-'*20)
print('-'*20, 'Output', '-'*20) print(res)
print(output_str)

View file

@ -5,7 +5,7 @@ In this directory, you will find examples on how you could apply IPEX-LLM INT4 o
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
## Example: Predict Tokens using `chat()` API ## Example: Predict Tokens using `chat()` API
In the example [generate.py](./generate.py), we show a basic use case for a MiniCPM-V-2 model to predict the next N tokens using `chat()` API, with IPEX-LLM INT4 optimizations on Intel GPUs. In the example [chat.py](./chat.py), we show a basic use case for a MiniCPM-V-2 model to predict the next N tokens using `chat()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
### 1. Install ### 1. Install
#### 1.1 Installation on Linux #### 1.1 Installation on Linux
We suggest using conda to manage environment: We suggest using conda to manage environment:
@ -106,15 +106,20 @@ set SYCL_CACHE_PERSISTENT=1
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile. > For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples ### 4. Running examples
- chat without streaming mode:
``` ```
python ./generate.py --prompt 'What is in the image?' python ./chat.py --prompt 'What is in the image?'
```
- chat in streaming mode:
```
python ./chat.py --prompt 'What is in the image?' --stream
``` ```
Arguments info: Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM-V-2 (e.g. `openbmb/MiniCPM-V-2`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-V-2'`. - `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM-V-2 (e.g. `openbmb/MiniCPM-V-2`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-V-2'`.
- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`. - `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`. - `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. - `--stream`: flag to chat in streaming mode
#### Sample Output #### Sample Output
@ -122,12 +127,20 @@ Arguments info:
```log ```log
Inference time: xxxx s Inference time: xxxx s
-------------------- Input -------------------- -------------------- Input Image --------------------
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
-------------------- Prompt -------------------- -------------------- Input Prompt --------------------
What is in the image? What is in the image?
-------------------- Output -------------------- -------------------- Chat Output --------------------
In the image, there is a young child holding a teddy bear. The teddy bear appears to be dressed in a pink tutu. The child is also wearing a red and white striped dress. The background of the image includes a stone wall and some red flowers. In the image, there is a young child holding a teddy bear. The teddy bear is dressed in a pink tutu. The child is also wearing a red and white striped dress. The background of the image features a stone wall and some red flowers.
```
```log
-------------------- Input Image --------------------
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
-------------------- Input Prompt --------------------
图片里有什么?
-------------------- Chat Output --------------------
图中是一个小女孩,她手里拿着一只粉白相间的泰迪熊。
``` ```
The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)): The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)):

View file

@ -15,6 +15,7 @@
# #
from typing import List, Tuple, Optional, Union from typing import List, Tuple, Optional, Union
import math import math
import timm import timm
@ -110,6 +111,7 @@ import os
import time import time
import argparse import argparse
import requests import requests
import torch
from PIL import Image from PIL import Image
from ipex_llm.transformers import AutoModel from ipex_llm.transformers import AutoModel
from transformers import AutoTokenizer from transformers import AutoTokenizer
@ -125,8 +127,8 @@ if __name__ == '__main__':
help='The URL or path to the image to infer') help='The URL or path to the image to infer')
parser.add_argument('--prompt', type=str, default="What is in the image?", parser.add_argument('--prompt', type=str, default="What is in the image?",
help='Prompt to infer') help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32, parser.add_argument('--stream', action='store_true',
help='Max tokens to predict') help='Whether to chat in streaming mode')
args = parser.parse_args() args = parser.parse_args()
model_path = args.repo_id_or_model_path model_path = args.repo_id_or_model_path
@ -140,9 +142,9 @@ if __name__ == '__main__':
load_in_low_bit="asym_int4", load_in_low_bit="asym_int4",
optimize_model=True, optimize_model=True,
trust_remote_code=True, trust_remote_code=True,
modules_to_not_convert=["vpm", "resampler", "lm_head"], use_cache=True,
use_cache=True) modules_to_not_convert=["vpm", "resampler"])
model = model.half().to(device='xpu') model = model.half().to('xpu')
tokenizer = AutoTokenizer.from_pretrained(model_path, tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True) trust_remote_code=True)
model.eval() model.eval()
@ -156,6 +158,34 @@ if __name__ == '__main__':
# Generate predicted tokens # Generate predicted tokens
# here the prompt tuning refers to https://huggingface.co/openbmb/MiniCPM-V-2/blob/main/README.md # here the prompt tuning refers to https://huggingface.co/openbmb/MiniCPM-V-2/blob/main/README.md
msgs = [{'role': 'user', 'content': args.prompt}] msgs = [{'role': 'user', 'content': args.prompt}]
# ipex_llm model needs a warmup, then inference time can be accurate
res, context, _ = model.chat(
image=image,
msgs=msgs,
context=None,
tokenizer=tokenizer,
sampling=False,
temperature=0.7
)
if args.stream:
res, context, _ = model.chat(
image=image,
msgs=msgs,
context=None,
tokenizer=tokenizer,
sampling=False,
temperature=0.7
)
print('-'*20, 'Input Image', '-'*20)
print(image_path)
print('-'*20, 'Input Prompt', '-'*20)
print(args.prompt)
print('-'*20, 'Stream Chat Output', '-'*20)
for new_text in res:
print(new_text, flush=True, end='')
else:
st = time.time() st = time.time()
res, context, _ = model.chat( res, context, _ = model.chat(
image=image, image=image,
@ -165,12 +195,13 @@ if __name__ == '__main__':
sampling=False, sampling=False,
temperature=0.7 temperature=0.7
) )
torch.xpu.synchronize()
end = time.time() end = time.time()
print(f'Inference time: {end-st} s') print(f'Inference time: {end-st} s')
print('-'*20, 'Input', '-'*20) print('-'*20, 'Input Image', '-'*20)
print(image_path) print(image_path)
print('-'*20, 'Prompt', '-'*20) print('-'*20, 'Input Prompt', '-'*20)
print(args.prompt) print(args.prompt)
output_str = res print('-'*20, 'Chat Output', '-'*20)
print('-'*20, 'Output', '-'*20) print(res)
print(output_str)

View file

@ -108,11 +108,11 @@ set SYCL_CACHE_PERSISTENT=1
- chat without streaming mode: - chat without streaming mode:
``` ```
python ./generate.py --prompt 'What is in the image?' python ./chat.py --prompt 'What is in the image?'
``` ```
- chat in streaming mode: - chat in streaming mode:
``` ```
python ./generate.py --prompt 'What is in the image?' --stream python ./chat.py --prompt 'What is in the image?' --stream
``` ```
> [!TIP] > [!TIP]