commit
15ad2fd72e
4 changed files with 155 additions and 104 deletions
111
.github/workflows/llm-harness-evaluation.yml
vendored
111
.github/workflows/llm-harness-evaluation.yml
vendored
|
|
@ -70,9 +70,9 @@ jobs:
|
|||
- name: set-pr-env
|
||||
if: ${{github.event_name == 'pull_request'}}
|
||||
env:
|
||||
PR_MATRIX_MODEL_NAME: '["Mistral-7B-v0.1"]'
|
||||
PR_MATRIX_TASK: '["arc", "truthfulqa", "winogrande"]'
|
||||
PR_MATRIX_PRECISION: '["fp8"]'
|
||||
PR_MATRIX_MODEL_NAME: '["stablelm-3b-4e1t"]'
|
||||
PR_MATRIX_TASK: '["winogrande"]'
|
||||
PR_MATRIX_PRECISION: '["sym_int4"]'
|
||||
PR_LABELS: '["self-hosted", "llm", "temp-arc01"]'
|
||||
|
||||
run: |
|
||||
|
|
@ -112,8 +112,6 @@ jobs:
|
|||
device: [xpu]
|
||||
|
||||
runs-on: ${{ fromJson(needs.set-matrix.outputs.runner) }}
|
||||
outputs:
|
||||
output_path: ${{ steps.run_harness.outputs.output_path }}
|
||||
env:
|
||||
ANALYTICS_ZOO_ROOT: ${{ github.workspace }}
|
||||
ORIGIN_DIR: /mnt/disk1/models
|
||||
|
|
@ -146,7 +144,10 @@ jobs:
|
|||
working-directory: ${{ github.workspace }}/python/llm/dev/benchmark/harness/
|
||||
shell: bash
|
||||
run: |
|
||||
pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git@b281b09
|
||||
git clone https://github.com/EleutherAI/lm-evaluation-harness.git
|
||||
cd lm-evaluation-harness
|
||||
git checkout b281b09
|
||||
pip install -e .
|
||||
|
||||
- name: Download models and datasets
|
||||
shell: bash
|
||||
|
|
@ -164,14 +165,13 @@ jobs:
|
|||
run: |
|
||||
pip install --upgrade datasets==2.14.6
|
||||
if [ "${{ matrix.model_name }}" = "Mistral-7B-v0.1" ]; then
|
||||
pip install --upgrade transformers==4.36
|
||||
pip install --upgrade transformers==4.36
|
||||
else
|
||||
pip install --upgrade transformers==4.31
|
||||
pip install --upgrade transformers==4.31
|
||||
fi
|
||||
|
||||
|
||||
- name: Run harness nightly
|
||||
if: ${{github.event_name == 'schedule'}}
|
||||
- name: Run harness
|
||||
shell: bash
|
||||
working-directory: ${{ github.workspace }}/python/llm/dev/benchmark/harness
|
||||
env:
|
||||
|
|
@ -183,6 +183,11 @@ jobs:
|
|||
export HF_DATASETS_CACHE=$HARNESS_HF_HOME/datasets
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
|
||||
# set --limit if it's pr-triggered to accelerate pr action
|
||||
if ${{github.event_name == 'pull_request'}}; then
|
||||
export LIMIT="--limit 4"
|
||||
fi
|
||||
|
||||
python run_llb.py \
|
||||
--model bigdl-llm \
|
||||
--pretrained ${MODEL_PATH} \
|
||||
|
|
@ -190,28 +195,7 @@ jobs:
|
|||
--device ${{ matrix.device }} \
|
||||
--tasks ${{ matrix.task }} \
|
||||
--batch_size 1 --no_cache --output_path results \
|
||||
|
||||
- name: Run harness pr
|
||||
if: ${{github.event_name == 'pull_request'}}
|
||||
shell: bash
|
||||
working-directory: ${{ github.workspace }}/python/llm/dev/benchmark/harness
|
||||
env:
|
||||
USE_XETLA: OFF
|
||||
# SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS: 1
|
||||
run: |
|
||||
export HF_HOME=${HARNESS_HF_HOME}
|
||||
export HF_DATASETS=$HARNESS_HF_HOME/datasets
|
||||
export HF_DATASETS_CACHE=$HARNESS_HF_HOME/datasets
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
|
||||
python run_llb.py \
|
||||
--model bigdl-llm \
|
||||
--pretrained ${MODEL_PATH} \
|
||||
--precision ${{ matrix.precision }} \
|
||||
--device ${{ matrix.device }} \
|
||||
--tasks ${{ matrix.task }} \
|
||||
--batch_size 1 --no_cache --output_path results \
|
||||
--limit 3 \
|
||||
$LIMIT
|
||||
|
||||
- uses: actions/upload-artifact@v3
|
||||
with:
|
||||
|
|
@ -250,12 +234,12 @@ jobs:
|
|||
shell: bash
|
||||
run: |
|
||||
ls results
|
||||
python ${{ github.workspace }}/python/llm/dev/benchmark/harness/make_table_and_csv.py results
|
||||
python ${{ github.workspace }}/python/llm/dev/benchmark/harness/make_table.py results
|
||||
|
||||
# TODO: change machine to store the results later
|
||||
llm-harness-summary-html:
|
||||
llm-harness-html:
|
||||
if: ${{github.event_name == 'schedule' || github.event_name == 'pull_request'}}
|
||||
needs: [set-matrix, llm-harness-evaluation]
|
||||
needs: [llm-harness-evaluation]
|
||||
runs-on: ["self-hosted", "llm", "accuracy1", "accuracy-nightly"]
|
||||
steps:
|
||||
- uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3
|
||||
|
|
@ -268,54 +252,45 @@ jobs:
|
|||
run: |
|
||||
pip install --upgrade pip
|
||||
pip install jsonlines pytablewriter regex
|
||||
pip install pandas==1.5.3
|
||||
|
||||
- name: Set output path
|
||||
shell: bash
|
||||
run: |
|
||||
DATE=$(date +%Y-%m-%d)
|
||||
OUTPUT_PATH="results_$DATE"
|
||||
echo "OUTPUT_PATH=$OUTPUT_PATH" >> $GITHUB_ENV
|
||||
NIGHTLY_FOLDER="/home/arda/harness-action-runners/nightly-accuracy-data"
|
||||
echo "NIGHTLY_FOLDER=$NIGHTLY_FOLDER" >> $GITHUB_ENV
|
||||
PR_FOLDER="/home/arda/harness-action-runners/pr-accuracy-data"
|
||||
echo "PR_FOLDER=$PR_FOLDER" >> $GITHUB_ENV
|
||||
echo "DATE=$(date +%Y-%m-%d)" >> $GITHUB_ENV
|
||||
if ${{github.event_name == 'pull_request'}}; then
|
||||
echo 'ACC_FOLDER=/home/arda/harness-action-runners/pr-accuracy-data' >> $GITHUB_ENV
|
||||
fi
|
||||
if ${{github.event_name == 'schedule'}}; then
|
||||
echo 'ACC_FOLDER=/home/arda/harness-action-runners/nightly-accuracy-data' >> $GITHUB_ENV
|
||||
fi
|
||||
|
||||
- name: Download all results for nightly run
|
||||
if: github.event_name == 'schedule'
|
||||
- name: Download harness results
|
||||
uses: actions/download-artifact@v3
|
||||
with:
|
||||
name: harness_results
|
||||
path: ${{ env.NIGHTLY_FOLDER}}/${{ env.OUTPUT_PATH }}
|
||||
|
||||
- name: Download all results for pr run
|
||||
if: github.event_name == 'pull_request'
|
||||
uses: actions/download-artifact@v3
|
||||
with:
|
||||
name: harness_results
|
||||
path: ${{ env.PR_FOLDER}}/${{ env.OUTPUT_PATH }}
|
||||
path: ${{ env.ACC_FOLDER}}/${{ env.DATE }}
|
||||
|
||||
|
||||
# Save fp16.csv in the parent folder of env.nightly_folder
|
||||
- name: Download fp16.csv for summary
|
||||
- name: Download FP16 results
|
||||
shell: bash
|
||||
run: |
|
||||
wget https://raw.githubusercontent.com/intel-analytics/BigDL/main/python/llm/test/benchmark/harness/fp16.csv -O ${{ env.NIGHTLY_FOLDER}}/../fp16.csv
|
||||
ls ${{ env.NIGHTLY_FOLDER}}/..
|
||||
wget https://raw.githubusercontent.com/intel-analytics/BigDL/main/python/llm/test/benchmark/harness/fp16.csv -O $ACC_FOLDER/../fp16.csv
|
||||
ls $ACC_FOLDER/..
|
||||
|
||||
- name: Summarize the results for nightly run
|
||||
if: github.event_name == 'schedule'
|
||||
- name: Write to CSV
|
||||
working-directory: ${{ github.workspace }}/python/llm/dev/benchmark/harness
|
||||
shell: bash
|
||||
run: |
|
||||
ls /home/arda/harness-action-runners/nightly-accuracy-data/${{ env.OUTPUT_PATH }}
|
||||
pip install pandas==1.5.3
|
||||
python ${{ github.workspace }}/python/llm/dev/benchmark/harness/make_table_and_csv.py ${{ env.NIGHTLY_FOLDER}}/${{ env.OUTPUT_PATH }} ${{ env.NIGHTLY_FOLDER}}
|
||||
python ${{ github.workspace }}/python/llm/test/benchmark/harness/harness_csv_to_html.py -f ${{ env.NIGHTLY_FOLDER}}
|
||||
python ${{ github.workspace }}/python/llm/test/benchmark/harness/update_html_in_parent_folder.py -f ${{ env.NIGHTLY_FOLDER }}
|
||||
ls $ACC_FOLDER/$DATE
|
||||
python make_csv.py $ACC_FOLDER/$DATE $ACC_FOLDER
|
||||
|
||||
- name: Summarize the results for pull request
|
||||
if: github.event_name == 'pull_request'
|
||||
- name: Update HTML
|
||||
working-directory: ${{ github.workspace }}/python/llm/test/benchmark/harness
|
||||
shell: bash
|
||||
run: |
|
||||
ls /home/arda/harness-action-runners/pr-accuracy-data/${{ env.OUTPUT_PATH }}
|
||||
pip install pandas==1.5.3
|
||||
python ${{ github.workspace }}/python/llm/dev/benchmark/harness/make_table_and_csv.py ${{ env.PR_FOLDER}}/${{ env.OUTPUT_PATH }} ${{ env.PR_FOLDER}}
|
||||
python ${{ github.workspace }}/python/llm/test/benchmark/harness/harness_csv_to_html.py -f ${{ env.PR_FOLDER}}
|
||||
python harness_csv_to_html.py -f $ACC_FOLDER
|
||||
if ${{github.event_name == 'schedule'}}; then
|
||||
python update_html_in_parent_folder.py -f $ACC_FOLDER
|
||||
fi
|
||||
|
|
@ -5,7 +5,10 @@ Before running, make sure to have [bigdl-llm](../../../README.md) installed.
|
|||
|
||||
## Install Harness
|
||||
```bash
|
||||
pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git@b281b09
|
||||
git clone https://github.com/EleutherAI/lm-evaluation-harness.git
|
||||
cd lm-evaluation-harness
|
||||
git checkout b281b09
|
||||
pip install -e .
|
||||
```
|
||||
|
||||
## Run
|
||||
|
|
@ -26,3 +29,7 @@ python run_multi_llb.py --model bigdl-llm --pretrained /path/to/model --precisio
|
|||
Taking example above, the script will fork 3 processes, each for one xpu, to execute the tasks.
|
||||
## Results
|
||||
We follow [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) to record our metrics, `acc_norm` for `hellaswag` and `arc_challenge`, `mc2` for `truthful_qa` and `acc` for `mmlu`. For `mmlu`, there are 57 subtasks which means users may need to average them manually to get final result.
|
||||
## Summarize the results
|
||||
"""python
|
||||
python make_table.py <input_dir>
|
||||
"""
|
||||
102
python/llm/dev/benchmark/harness/make_csv.py
Normal file
102
python/llm/dev/benchmark/harness/make_csv.py
Normal file
|
|
@ -0,0 +1,102 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
"""
|
||||
Usage:
|
||||
python make_csv.py <input_dir> <output_dir>
|
||||
"""
|
||||
|
||||
import logging
|
||||
from pytablewriter import MarkdownTableWriter, LatexTableWriter
|
||||
import os
|
||||
import json
|
||||
import sys
|
||||
import csv
|
||||
import datetime
|
||||
from harness_to_leaderboard import task_to_metric
|
||||
|
||||
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def make_csv(result_dict, output_path=None):
|
||||
current_date = datetime.datetime.now().strftime("%Y-%m-%d")
|
||||
file_name = f'results_{current_date}.csv'
|
||||
full_path = os.path.join(output_path, file_name) if output_path else file_name
|
||||
print('Writing to', full_path)
|
||||
file_name = full_path
|
||||
headers = ["Index", "Model", "Precision", "Arc", "TruthfulQA", "Winogrande"]
|
||||
|
||||
with open(file_name, mode='w', newline='') as csv_file:
|
||||
writer = csv.writer(csv_file)
|
||||
writer.writerow(headers)
|
||||
index = 0
|
||||
for model, model_results in result_dict.items():
|
||||
for precision, prec_results in model_results.items():
|
||||
row = [index, model, precision]
|
||||
for task in headers[3:]:
|
||||
task_results = prec_results.get(task.lower(), None)
|
||||
if task_results is None:
|
||||
row.append("")
|
||||
else:
|
||||
m = task_to_metric[task.lower()]
|
||||
results = task_results["results"]
|
||||
result = list(results.values())[0] if len(results) == 1 else results[task.lower()]
|
||||
row.append("%.2f" % (result[m] * 100))
|
||||
writer.writerow(row)
|
||||
index += 1
|
||||
|
||||
|
||||
def merge_results(path):
|
||||
# loop dirs and subdirs in results dir
|
||||
# for each dir, load json files
|
||||
print('Read from', path)
|
||||
merged_results = dict()
|
||||
for dirpath, dirnames, filenames in os.walk(path):
|
||||
# skip dirs without files
|
||||
if not filenames:
|
||||
continue
|
||||
for filename in sorted([f for f in filenames if f.endswith("result.json")]):
|
||||
path = os.path.join(dirpath, filename)
|
||||
model, device, precision, task = dirpath.split('/')[-4:]
|
||||
with open(path, "r") as f:
|
||||
result_dict = json.load(f)
|
||||
if model not in merged_results:
|
||||
merged_results[model] = dict()
|
||||
if precision not in merged_results[model]:
|
||||
merged_results[model][precision] = dict()
|
||||
merged_results[model][precision][task] = result_dict
|
||||
return merged_results
|
||||
|
||||
|
||||
def main(*args):
|
||||
assert len(args) > 2, \
|
||||
"""Usage:
|
||||
python make_csv.py <input_dir> <output_dir>
|
||||
"""
|
||||
|
||||
input_path = args[1]
|
||||
output_path = args[2]
|
||||
|
||||
|
||||
merged_results = merge_results(input_path)
|
||||
make_csv(merged_results, output_path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# when running from the harness, the first argument is the script name
|
||||
# you must name the second argument and the third argument(optional) to be the input_dir and output_dir
|
||||
main(*sys.argv)
|
||||
|
|
@ -15,7 +15,7 @@
|
|||
#
|
||||
"""
|
||||
Usage:
|
||||
python make_table_results.py <input_dir>
|
||||
python make_table.py <input_dir>
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
|
@ -69,40 +69,13 @@ def make_table(result_dict):
|
|||
|
||||
return md_writer.dumps()
|
||||
|
||||
def make_csv(result_dict, output_path=None):
|
||||
current_date = datetime.datetime.now().strftime("%Y-%m-%d")
|
||||
file_name = f'results_{current_date}.csv'
|
||||
full_path = os.path.join(output_path, file_name) if output_path else file_name
|
||||
print('Writing to', full_path)
|
||||
file_name = full_path
|
||||
headers = ["Index", "Model", "Precision", "Arc", "TruthfulQA", "Winogrande"]
|
||||
|
||||
with open(file_name, mode='w', newline='') as csv_file:
|
||||
writer = csv.writer(csv_file)
|
||||
writer.writerow(headers)
|
||||
index = 0
|
||||
for model, model_results in result_dict.items():
|
||||
for precision, prec_results in model_results.items():
|
||||
row = [index, model, precision]
|
||||
for task in headers[3:]:
|
||||
task_results = prec_results.get(task.lower(), None)
|
||||
if task_results is None:
|
||||
row.append("")
|
||||
else:
|
||||
m = task_to_metric[task.lower()]
|
||||
results = task_results["results"]
|
||||
result = list(results.values())[0] if len(results) == 1 else results[task.lower()]
|
||||
row.append("%.2f" % (result[m] * 100))
|
||||
writer.writerow(row)
|
||||
index += 1
|
||||
|
||||
|
||||
def merge_results(path):
|
||||
# loop dirs and subdirs in results dir
|
||||
# for each dir, load json files
|
||||
print('Read from', path)
|
||||
merged_results = dict()
|
||||
for dirpath, dirnames, filenames in os.walk(sys.argv[1]):
|
||||
for dirpath, dirnames, filenames in os.walk(path):
|
||||
# skip dirs without files
|
||||
if not filenames:
|
||||
continue
|
||||
|
|
@ -124,14 +97,8 @@ def main(*args):
|
|||
input_path = args[1]
|
||||
else:
|
||||
raise ValueError("Input path is required")
|
||||
|
||||
if len(args) > 2:
|
||||
output_path = args[2] # use the third argument as the output path
|
||||
else:
|
||||
output_path = "./" # default to current directory
|
||||
|
||||
merged_results = merge_results(input_path)
|
||||
make_csv(merged_results, output_path)
|
||||
print(make_table(merged_results))
|
||||
|
||||
|
||||
Loading…
Reference in a new issue