[NPU] Add initial support for minicpm-llama-v2.5 (#11962)
* add initial support for minicpm-llama-v2.5 * update impl * add minicpm-llama3-v2.5 example
This commit is contained in:
parent
ae7302a654
commit
158289d205
2 changed files with 115 additions and 4 deletions
|
|
@ -0,0 +1,103 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import os
|
||||
import torch
|
||||
import time
|
||||
import argparse
|
||||
|
||||
from ipex_llm.transformers.npu_model import AutoModel, AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer
|
||||
from transformers.utils import logging
|
||||
|
||||
import requests
|
||||
from PIL import Image
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Predict Tokens using `chat()` API for npu model"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--repo-id-or-model-path",
|
||||
type=str,
|
||||
default="openbmb/MiniCPM-Llama3-V-2_5",
|
||||
help="The huggingface repo id for the MiniCPM-Llama3-V-2_5 model to be downloaded"
|
||||
", or the path to the huggingface checkpoint folder",
|
||||
)
|
||||
parser.add_argument('--image-url-or-path', type=str,
|
||||
default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg',
|
||||
help='The URL or path to the image to infer')
|
||||
parser.add_argument('--prompt', type=str, default="What is in the image?",
|
||||
help='Prompt to infer')
|
||||
parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
|
||||
parser.add_argument("--max-output-len", type=int, default=1024)
|
||||
parser.add_argument("--max-prompt-len", type=int, default=512)
|
||||
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
|
||||
parser.add_argument("--intra-pp", type=int, default=2)
|
||||
parser.add_argument("--inter-pp", type=int, default=2)
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_path,
|
||||
torch_dtype=torch.float32,
|
||||
trust_remote_code=True,
|
||||
attn_implementation="eager",
|
||||
load_in_low_bit="sym_int4",
|
||||
optimize_model=True,
|
||||
max_output_len=args.max_output_len,
|
||||
max_prompt_len=args.max_prompt_len,
|
||||
intra_pp=args.intra_pp,
|
||||
inter_pp=args.inter_pp,
|
||||
transpose_value_cache=not args.disable_transpose_value_cache,
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
print("-" * 80)
|
||||
print("done")
|
||||
|
||||
msgs = [{'role': 'user', 'content': args.prompt}]
|
||||
image_path = args.image_url_or_path
|
||||
if os.path.exists(image_path):
|
||||
image = Image.open(image_path).convert('RGB')
|
||||
else:
|
||||
image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')
|
||||
|
||||
st = time.time()
|
||||
res = model.chat(
|
||||
image=image,
|
||||
msgs=msgs,
|
||||
tokenizer=tokenizer,
|
||||
sampling=True,
|
||||
temperature=0.7,
|
||||
# system_prompt='' # pass system_prompt if needed
|
||||
)
|
||||
end = time.time()
|
||||
|
||||
print(f'Inference time: {end-st} s')
|
||||
print('-'*20, 'Input', '-'*20)
|
||||
print(image_path)
|
||||
print('-'*20, 'Prompt', '-'*20)
|
||||
print(args.prompt)
|
||||
output_str = res
|
||||
print('-'*20, 'Output', '-'*20)
|
||||
print(output_str)
|
||||
|
||||
print("done")
|
||||
print("success shut down")
|
||||
|
|
@ -152,17 +152,25 @@ class _BaseAutoModelClass:
|
|||
)
|
||||
from ipex_llm.transformers.npu_models.convert_mp import optimize_llm, optimize_llm_pre
|
||||
|
||||
if model.config.model_type == "minicpmv":
|
||||
llm = model.llm
|
||||
if llm.config.hidden_size == 4096 and llm.config.vocab_size == 128256:
|
||||
# MiniCPM-llama3-V2.5
|
||||
llm.config.model_type = "llama"
|
||||
else:
|
||||
llm = model
|
||||
|
||||
with torch.no_grad():
|
||||
optimize_llm_pre(model, qtype)
|
||||
cls.load_convert(qtype, model, "cpu", *args, **kwargs)
|
||||
create_npu_kernels(model)
|
||||
optimize_llm_pre(llm, qtype)
|
||||
cls.load_convert(qtype, llm, "cpu", *args, **kwargs)
|
||||
create_npu_kernels(llm)
|
||||
model = model.eval()
|
||||
logger.info(f"Finish to convert model")
|
||||
model.config.update({"bigdl_transformers_low_bit": qtype})
|
||||
model.share_memory()
|
||||
|
||||
optimize_llm(
|
||||
model,
|
||||
llm,
|
||||
max_output_len=max_output_len,
|
||||
max_prompt_len=max_prompt_len,
|
||||
inter_pp=inter_pp,
|
||||
|
|
|
|||
Loading…
Reference in a new issue