[NPU] Add initial support for minicpm-llama-v2.5 (#11962)
* add initial support for minicpm-llama-v2.5 * update impl * add minicpm-llama3-v2.5 example
This commit is contained in:
		
							parent
							
								
									ae7302a654
								
							
						
					
					
						commit
						158289d205
					
				
					 2 changed files with 115 additions and 4 deletions
				
			
		| 
						 | 
					@ -0,0 +1,103 @@
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Copyright 2016 The BigDL Authors.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import os
 | 
				
			||||||
 | 
					import torch
 | 
				
			||||||
 | 
					import time
 | 
				
			||||||
 | 
					import argparse
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from ipex_llm.transformers.npu_model import AutoModel, AutoModelForCausalLM
 | 
				
			||||||
 | 
					from transformers import AutoTokenizer
 | 
				
			||||||
 | 
					from transformers.utils import logging
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import requests
 | 
				
			||||||
 | 
					from PIL import Image
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					logger = logging.get_logger(__name__)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == "__main__":
 | 
				
			||||||
 | 
					    parser = argparse.ArgumentParser(
 | 
				
			||||||
 | 
					        description="Predict Tokens using `chat()` API for npu model"
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					    parser.add_argument(
 | 
				
			||||||
 | 
					        "--repo-id-or-model-path",
 | 
				
			||||||
 | 
					        type=str,
 | 
				
			||||||
 | 
					        default="openbmb/MiniCPM-Llama3-V-2_5",
 | 
				
			||||||
 | 
					        help="The huggingface repo id for the MiniCPM-Llama3-V-2_5 model to be downloaded"
 | 
				
			||||||
 | 
					        ", or the path to the huggingface checkpoint folder",
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					    parser.add_argument('--image-url-or-path', type=str,
 | 
				
			||||||
 | 
					                        default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg',
 | 
				
			||||||
 | 
					                        help='The URL or path to the image to infer')
 | 
				
			||||||
 | 
					    parser.add_argument('--prompt', type=str, default="What is in the image?",
 | 
				
			||||||
 | 
					                        help='Prompt to infer')
 | 
				
			||||||
 | 
					    parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
 | 
				
			||||||
 | 
					    parser.add_argument("--max-output-len", type=int, default=1024)
 | 
				
			||||||
 | 
					    parser.add_argument("--max-prompt-len", type=int, default=512)
 | 
				
			||||||
 | 
					    parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
 | 
				
			||||||
 | 
					    parser.add_argument("--intra-pp", type=int, default=2)
 | 
				
			||||||
 | 
					    parser.add_argument("--inter-pp", type=int, default=2)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    args = parser.parse_args()
 | 
				
			||||||
 | 
					    model_path = args.repo_id_or_model_path
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    model = AutoModelForCausalLM.from_pretrained(
 | 
				
			||||||
 | 
					        model_path,
 | 
				
			||||||
 | 
					        torch_dtype=torch.float32,
 | 
				
			||||||
 | 
					        trust_remote_code=True,
 | 
				
			||||||
 | 
					        attn_implementation="eager",
 | 
				
			||||||
 | 
					        load_in_low_bit="sym_int4",
 | 
				
			||||||
 | 
					        optimize_model=True,
 | 
				
			||||||
 | 
					        max_output_len=args.max_output_len,
 | 
				
			||||||
 | 
					        max_prompt_len=args.max_prompt_len,
 | 
				
			||||||
 | 
					        intra_pp=args.intra_pp,
 | 
				
			||||||
 | 
					        inter_pp=args.inter_pp,
 | 
				
			||||||
 | 
					        transpose_value_cache=not args.disable_transpose_value_cache,
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    print("-" * 80)
 | 
				
			||||||
 | 
					    print("done")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    msgs = [{'role': 'user', 'content': args.prompt}]
 | 
				
			||||||
 | 
					    image_path = args.image_url_or_path
 | 
				
			||||||
 | 
					    if os.path.exists(image_path):
 | 
				
			||||||
 | 
					       image = Image.open(image_path).convert('RGB')
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					       image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    st = time.time()
 | 
				
			||||||
 | 
					    res = model.chat(
 | 
				
			||||||
 | 
					        image=image,
 | 
				
			||||||
 | 
					        msgs=msgs,
 | 
				
			||||||
 | 
					        tokenizer=tokenizer,
 | 
				
			||||||
 | 
					        sampling=True,
 | 
				
			||||||
 | 
					        temperature=0.7,
 | 
				
			||||||
 | 
					        # system_prompt='' # pass system_prompt if needed
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					    end = time.time()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    print(f'Inference time: {end-st} s')
 | 
				
			||||||
 | 
					    print('-'*20, 'Input', '-'*20)
 | 
				
			||||||
 | 
					    print(image_path)
 | 
				
			||||||
 | 
					    print('-'*20, 'Prompt', '-'*20)
 | 
				
			||||||
 | 
					    print(args.prompt)
 | 
				
			||||||
 | 
					    output_str = res
 | 
				
			||||||
 | 
					    print('-'*20, 'Output', '-'*20)
 | 
				
			||||||
 | 
					    print(output_str)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    print("done")
 | 
				
			||||||
 | 
					    print("success shut down")
 | 
				
			||||||
| 
						 | 
					@ -152,17 +152,25 @@ class _BaseAutoModelClass:
 | 
				
			||||||
            )
 | 
					            )
 | 
				
			||||||
            from ipex_llm.transformers.npu_models.convert_mp import optimize_llm, optimize_llm_pre
 | 
					            from ipex_llm.transformers.npu_models.convert_mp import optimize_llm, optimize_llm_pre
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            if model.config.model_type == "minicpmv":
 | 
				
			||||||
 | 
					                llm = model.llm
 | 
				
			||||||
 | 
					                if llm.config.hidden_size == 4096 and llm.config.vocab_size == 128256:
 | 
				
			||||||
 | 
					                    # MiniCPM-llama3-V2.5
 | 
				
			||||||
 | 
					                    llm.config.model_type = "llama"
 | 
				
			||||||
 | 
					            else:
 | 
				
			||||||
 | 
					                llm = model
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            with torch.no_grad():
 | 
					            with torch.no_grad():
 | 
				
			||||||
                optimize_llm_pre(model, qtype)
 | 
					                optimize_llm_pre(llm, qtype)
 | 
				
			||||||
                cls.load_convert(qtype, model, "cpu", *args, **kwargs)
 | 
					                cls.load_convert(qtype, llm, "cpu", *args, **kwargs)
 | 
				
			||||||
                create_npu_kernels(model)
 | 
					                create_npu_kernels(llm)
 | 
				
			||||||
            model = model.eval()
 | 
					            model = model.eval()
 | 
				
			||||||
            logger.info(f"Finish to convert model")
 | 
					            logger.info(f"Finish to convert model")
 | 
				
			||||||
            model.config.update({"bigdl_transformers_low_bit": qtype})
 | 
					            model.config.update({"bigdl_transformers_low_bit": qtype})
 | 
				
			||||||
            model.share_memory()
 | 
					            model.share_memory()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            optimize_llm(
 | 
					            optimize_llm(
 | 
				
			||||||
                model,
 | 
					                llm,
 | 
				
			||||||
                max_output_len=max_output_len,
 | 
					                max_output_len=max_output_len,
 | 
				
			||||||
                max_prompt_len=max_prompt_len,
 | 
					                max_prompt_len=max_prompt_len,
 | 
				
			||||||
                inter_pp=inter_pp,
 | 
					                inter_pp=inter_pp,
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in a new issue