Integrate NPU C++ imple into ipex-llm (#12461)
This commit is contained in:
parent
490bb0ca53
commit
14d8d3d8af
6 changed files with 238 additions and 19 deletions
|
|
@ -34,7 +34,7 @@ int main(int argc, char ** argv) {
|
|||
common_params params;
|
||||
|
||||
// path to the npu model directory
|
||||
std::string model_dir;
|
||||
char* model_dir;
|
||||
// prompt to generate text from
|
||||
std::string prompt = "AI是什么?";
|
||||
// number of tokens to predict
|
||||
|
|
@ -69,7 +69,7 @@ int main(int argc, char ** argv) {
|
|||
break;
|
||||
}
|
||||
}
|
||||
if (model_dir.empty()) {
|
||||
if (model_dir == nullptr || model_dir[0] == '\0') {
|
||||
print_usage(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
|
|
@ -86,8 +86,9 @@ int main(int argc, char ** argv) {
|
|||
params.model = model_dir;
|
||||
params.prompt = prompt;
|
||||
|
||||
void* model = load_model_from_file(params.model);
|
||||
npu_model_params model_params;
|
||||
NPUModel* model = load_model_from_file(model_params, params.model);
|
||||
load_config_from_file(model_params, params.model);
|
||||
|
||||
tokenizer_params tok_params;
|
||||
load_tokenizer(tok_params, params.model);
|
||||
|
|
@ -101,8 +102,8 @@ int main(int argc, char ** argv) {
|
|||
|
||||
std::vector<int32_t> embd; // output ids
|
||||
auto start = std::chrono::high_resolution_clock::now();
|
||||
float* logits = run_prefill(model, embd_inp);
|
||||
int32_t token = llm_sample_token(logits, true, model_params);
|
||||
float* logits = run_prefill(model, embd_inp.data(), embd_inp.size());
|
||||
int32_t token = llm_sample_token(logits, true, model_params.vocab_size);
|
||||
auto end = std::chrono::high_resolution_clock::now();
|
||||
auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(end - start);
|
||||
printf("\nPrefill %d tokens cost %d ms.\n", embd_inp.size(), duration.count());
|
||||
|
|
@ -112,7 +113,7 @@ int main(int argc, char ** argv) {
|
|||
start = std::chrono::high_resolution_clock::now();
|
||||
for (int i = 1; i < params.n_predict; i++){
|
||||
auto logits = run_decode(model, embd[i-1]);
|
||||
int32_t token = llm_sample_token(logits, true, model_params);
|
||||
int32_t token = llm_sample_token(logits, true, model_params.vocab_size);
|
||||
if (std::find(tok_params.eos_token_id.begin(), tok_params.eos_token_id.end(), token) == tok_params.eos_token_id.end()){
|
||||
embd.push_back(token);
|
||||
token_nums ++;
|
||||
|
|
@ -131,4 +132,4 @@ int main(int argc, char ** argv) {
|
|||
printf("\nDecode %d tokens cost %d ms (avg %f ms each token).\n", token_nums, duration.count(), (float)duration.count() / token_nums);
|
||||
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -54,7 +54,13 @@ if __name__ == "__main__":
|
|||
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
|
||||
parser.add_argument("--intra-pp", type=int, default=None)
|
||||
parser.add_argument("--inter-pp", type=int, default=None)
|
||||
parser.add_argument("--mixed-precision", action='store_true')
|
||||
parser.add_argument("--mixed-precision", action='store_false')
|
||||
parser.add_argument("--save-directory", type=str,
|
||||
required=True,
|
||||
help="The path of folder to save converted model, "
|
||||
"If path not exists, lowbit model will be saved there. "
|
||||
"Else, program will raise error.",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
|
|
@ -74,6 +80,7 @@ if __name__ == "__main__":
|
|||
transpose_value_cache=not args.disable_transpose_value_cache,
|
||||
mixed_precision=args.mixed_precision,
|
||||
quantization_group_size=args.quantization_group_size,
|
||||
save_directory=args.save_directory
|
||||
)
|
||||
else:
|
||||
model = AutoModelForCausalLM.load_low_bit(
|
||||
|
|
|
|||
|
|
@ -266,15 +266,28 @@ class _BaseAutoModelClass:
|
|||
model.share_memory()
|
||||
|
||||
if not pipeline:
|
||||
optimize_llm(
|
||||
llm,
|
||||
max_context_len=max_context_len,
|
||||
max_prompt_len=max_prompt_len,
|
||||
inter_pp=inter_pp,
|
||||
intra_pp=intra_pp,
|
||||
transpose_value_cache=transpose_value_cache,
|
||||
group_size=quantization_group_size
|
||||
)
|
||||
if model.config.model_type in ["qwen2"]:
|
||||
from ipex_llm.transformers.npu_models.convert import optimize_llm_single_process
|
||||
optimize_llm_single_process(
|
||||
llm,
|
||||
kv_len=max_context_len,
|
||||
max_prompt_len=max_prompt_len,
|
||||
transpose_value_cache=transpose_value_cache,
|
||||
group_size=quantization_group_size,
|
||||
qtype=qtype,
|
||||
save_directory=save_directory,
|
||||
fuse_layers=fuse_layers
|
||||
)
|
||||
else:
|
||||
optimize_llm(
|
||||
llm,
|
||||
max_context_len=max_context_len,
|
||||
max_prompt_len=max_prompt_len,
|
||||
inter_pp=inter_pp,
|
||||
intra_pp=intra_pp,
|
||||
transpose_value_cache=transpose_value_cache,
|
||||
group_size=quantization_group_size
|
||||
)
|
||||
else:
|
||||
from ipex_llm.transformers.npu_pipeline_model.convert_pipeline \
|
||||
import convert_llm
|
||||
|
|
|
|||
|
|
@ -14,10 +14,16 @@
|
|||
# limitations under the License.
|
||||
|
||||
|
||||
from ipex_llm.utils.common.log4Error import invalidInputError
|
||||
import os
|
||||
import torch
|
||||
import importlib
|
||||
from ipex_llm.transformers.npu_models.linear import QuantizedLinear
|
||||
import tempfile
|
||||
import time
|
||||
from typing import Callable, List, Optional
|
||||
from transformers import GenerationConfig, \
|
||||
LogitsProcessorList, StoppingCriteriaList
|
||||
|
||||
|
||||
def module_optimization(func) -> torch.nn.Module:
|
||||
|
|
@ -265,3 +271,110 @@ def optimize_llm_post(model: torch.nn.Module):
|
|||
in_features=model.lm_head.in_features).to("cpu")
|
||||
new_linear._parameters['weight'] = paramsLowBit
|
||||
model.lm_head = new_linear
|
||||
|
||||
|
||||
def generate(
|
||||
self,
|
||||
inputs: Optional[torch.Tensor] = None,
|
||||
generation_config: Optional[GenerationConfig] = None,
|
||||
logits_processor: Optional[LogitsProcessorList] = None,
|
||||
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
||||
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]]=None,
|
||||
synced_gpus: Optional[bool] = None,
|
||||
assistant_model: Optional["PreTrainedModel"] = None,
|
||||
streamer: Optional["BaseStreamer"] = None,
|
||||
**kwargs,
|
||||
):
|
||||
# if do_print=True, output timing message
|
||||
do_print = kwargs.pop("do_print", False)
|
||||
time_t1 = time.perf_counter()
|
||||
new_generate_kwargs = {}
|
||||
for var in ['max_new_tokens', 'attention_mask', 'eos_token_id']:
|
||||
value = kwargs.pop(var, None)
|
||||
if value is not None:
|
||||
new_generate_kwargs[var] = value
|
||||
|
||||
if isinstance(inputs[0], torch.Tensor):
|
||||
input_list = inputs[0].flatten().tolist()
|
||||
else:
|
||||
input_list = inputs[0]
|
||||
input_length = len(input_list)
|
||||
|
||||
new_tokens = new_generate_kwargs['max_new_tokens']
|
||||
invalidInputError(input_length + new_tokens <= self.kv_len + 1,
|
||||
"Input plus output tokens should not exceed max_context_len.")
|
||||
# TODO: may optimize this part later
|
||||
invalidInputError(new_tokens < 1024,
|
||||
f"Generated tokens ({new_tokens}) exceed named pipeline limitation.")
|
||||
|
||||
if "eos_token_id" not in new_generate_kwargs:
|
||||
eos = 0xffffffff
|
||||
else:
|
||||
eos = new_generate_kwargs["eos_token_id"]
|
||||
output_tokens = []
|
||||
from .npu_llm_cpp import run_decode, run_prefill, reset
|
||||
|
||||
token = run_prefill(self.model_ptr, input_list, self.vocab_size)
|
||||
idx = 1
|
||||
time_t2 = time.perf_counter()
|
||||
output_tokens.append(torch.tensor([token]))
|
||||
for i in range(new_tokens - 1):
|
||||
if token == eos:
|
||||
break
|
||||
token = run_decode(self.model_ptr, token, self.vocab_size)
|
||||
idx += 1
|
||||
output_tokens.append(torch.tensor([token]))
|
||||
output = torch.stack(output_tokens, dim=1)
|
||||
output = torch.cat((inputs, output), dim=1)
|
||||
time_t3 = time.perf_counter()
|
||||
|
||||
reset(self.model_ptr)
|
||||
self.first_cost = time_t2 - time_t1 # seconds
|
||||
self.rest_cost_mean = (time_t3 - time_t2) / (idx - 1) # seconds
|
||||
self.encoder_time = 0.0
|
||||
|
||||
if do_print:
|
||||
print(f" Number of input tokens: {input_length}")
|
||||
print(f" Generated tokens: {idx}")
|
||||
print(f" First token generation time: {(time_t2 - time_t1):.2f} s")
|
||||
print(f" Generation average latency: {(time_t3 - time_t2) * 1000 /(idx - 1):.2f} ms, "
|
||||
f"({(idx - 1)/(time_t3 - time_t2):.2f} token/s)")
|
||||
print(f" Generation time: {(time_t3 - time_t1):.2f} s\n")
|
||||
|
||||
return output
|
||||
|
||||
|
||||
def optimize_llm_single_process(
|
||||
model: torch.nn.Module,
|
||||
kv_len: int,
|
||||
max_prompt_len: int,
|
||||
transpose_value_cache: bool,
|
||||
group_size: int,
|
||||
qtype: str,
|
||||
save_directory: str,
|
||||
fuse_layers: int=None
|
||||
):
|
||||
from ipex_llm.transformers.npu_pipeline_model.convert_pipeline import convert_llm
|
||||
from .npu_llm_cpp import load_model_from_file
|
||||
|
||||
convert_llm(model,
|
||||
kv_len=kv_len,
|
||||
max_prompt_len=max_prompt_len,
|
||||
transpose_value_cache=transpose_value_cache,
|
||||
group_size=group_size,
|
||||
qtype=qtype,
|
||||
convert_model=True,
|
||||
save_directory=save_directory,
|
||||
fuse_layers=fuse_layers)
|
||||
try:
|
||||
model_ptr = load_model_from_file(save_directory)
|
||||
model.kv_len = kv_len
|
||||
model.model_ptr = model_ptr
|
||||
model.vocab_size = model.config.vocab_size
|
||||
except:
|
||||
invalidInputError(False,
|
||||
"False to InitLLMPipeline.")
|
||||
# patch generate function
|
||||
import types
|
||||
model.generate = types.MethodType(generate, model)
|
||||
return model
|
||||
|
|
|
|||
|
|
@ -0,0 +1,83 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import os
|
||||
import sys
|
||||
import ctypes
|
||||
import pathlib
|
||||
from ipex_llm.utils.common import invalidInputError
|
||||
|
||||
|
||||
def get_shared_lib_info(lib_base_name: str):
|
||||
# Determine the file extension based on the platform
|
||||
if sys.platform.startswith("linux") or sys.platform == "darwin":
|
||||
lib_ext = ".so"
|
||||
elif sys.platform == "win32":
|
||||
lib_ext = ".dll"
|
||||
else:
|
||||
invalidInputError(False, "Unsupported platform.")
|
||||
|
||||
# Construct the paths to the possible shared library names
|
||||
import importlib
|
||||
module = importlib.import_module("bigdl-core-npu")
|
||||
_base_path = pathlib.Path(module.__file__).parent.resolve()
|
||||
|
||||
lib_path = os.path.join(_base_path, lib_base_name + lib_ext)
|
||||
|
||||
return _base_path, lib_path
|
||||
|
||||
|
||||
_, _lib_path = get_shared_lib_info("npu_llm")
|
||||
|
||||
# Load the library
|
||||
_lib = ctypes.cdll.LoadLibrary(_lib_path)
|
||||
|
||||
_lib.load_model_from_file.argtypes = [ctypes.c_char_p]
|
||||
_lib.load_model_from_file.restype = ctypes.c_void_p
|
||||
|
||||
_lib.run_prefill.argtypes = [ctypes.c_void_p, ctypes.POINTER(ctypes.c_int), ctypes.c_int]
|
||||
_lib.run_prefill.restype = ctypes.POINTER(ctypes.c_float)
|
||||
|
||||
_lib.run_decode.argtypes = [ctypes.c_void_p, ctypes.c_int]
|
||||
_lib.run_decode.restype = ctypes.POINTER(ctypes.c_float)
|
||||
|
||||
_lib.llm_sample_token.argtypes = [ctypes.POINTER(ctypes.c_float), ctypes.c_bool, ctypes.c_int]
|
||||
_lib.llm_sample_token.restype = ctypes.c_int
|
||||
|
||||
_lib.reset.argtypes = [ctypes.c_void_p]
|
||||
_lib.reset.restype = None
|
||||
|
||||
|
||||
def load_model_from_file(model_dir: str):
|
||||
return _lib.load_model_from_file(model_dir.encode('utf-8'))
|
||||
|
||||
|
||||
def run_prefill(model_ptr, input_ids, vocab_size):
|
||||
input_ptr = (ctypes.c_int32 * len(input_ids))(*input_ids)
|
||||
input_len = len(input_ids)
|
||||
plogits = _lib.run_prefill(model_ptr, input_ptr, input_len)
|
||||
new_token = _lib.llm_sample_token(plogits, True, vocab_size)
|
||||
return new_token
|
||||
|
||||
|
||||
def run_decode(model_ptr, input_id, vocab_size):
|
||||
plogits = _lib.run_decode(model_ptr, input_id)
|
||||
new_token = _lib.llm_sample_token(plogits, True, vocab_size)
|
||||
return new_token
|
||||
|
||||
|
||||
def reset(model_ptr):
|
||||
_lib.reset(model_ptr)
|
||||
|
|
@ -426,9 +426,11 @@ def convert_llm_for_deploy(model: torch.nn.Module,
|
|||
group_size: int,
|
||||
save_directory: str=None,
|
||||
fuse_layers: int=None):
|
||||
os.mkdir(save_directory)
|
||||
if not os.path.exists(save_directory):
|
||||
os.mkdir(save_directory)
|
||||
weight_dir = os.path.join(save_directory, "model_weights")
|
||||
os.mkdir(weight_dir)
|
||||
if not os.path.exists(weight_dir):
|
||||
os.mkdir(weight_dir)
|
||||
layernorm_const = os.environ.get("IPEX_LLM_NPU_LAYERNORM_CONST", "1") == "1"
|
||||
|
||||
if model.config.model_type == "qwen2":
|
||||
|
|
|
|||
Loading…
Reference in a new issue