LLM: Add qlora finetunning CPU example (#9275)

* add qlora finetunning example

* update readme

* update example

* remove merge.py and update readme
This commit is contained in:
Wang, Jian4 2023-11-02 09:45:42 +08:00 committed by GitHub
parent 9722e811be
commit 149146004f
3 changed files with 163 additions and 0 deletions

View file

@ -0,0 +1,76 @@
# Finetuning LLAMA Using QLoRA (experimental support)
This example demonstrates how to finetune a llama2-7b model using Big-LLM 4bit optimizations on [Intel CPUs](../README.md).
## Example: Finetune llama2-7b using QLoRA
This example is ported from [bnb-4bit-training](https://colab.research.google.com/drive/1VoYNfYDKcKRQRor98Zbf2-9VQTtGJ24k).
### 1. Install
```bash
conda create -n llm python=3.9
conda activate llm
pip install --pre --upgrade bigdl-llm[all]
pip install transformers==4.34.0
pip install peft==0.5.0
pip install datasets
```
### 2. Finetune model
```
python ./qlora_finetuning_cpu.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --dataset DATASET
```
#### Sample Output
```log
{'loss': 2.5668, 'learning_rate': 0.0002, 'epoch': 0.03}
{'loss': 1.6988, 'learning_rate': 0.00017777777777777779, 'epoch': 0.06}
{'loss': 1.3073, 'learning_rate': 0.00015555555555555556, 'epoch': 0.1}
{'loss': 1.3495, 'learning_rate': 0.00013333333333333334, 'epoch': 0.13}
{'loss': 1.1746, 'learning_rate': 0.00011111111111111112, 'epoch': 0.16}
{'loss': 1.0794, 'learning_rate': 8.888888888888889e-05, 'epoch': 0.19}
{'loss': 1.2214, 'learning_rate': 6.666666666666667e-05, 'epoch': 0.22}
{'loss': 1.1698, 'learning_rate': 4.4444444444444447e-05, 'epoch': 0.26}
{'loss': 1.2044, 'learning_rate': 2.2222222222222223e-05, 'epoch': 0.29}
{'loss': 1.1516, 'learning_rate': 0.0, 'epoch': 0.32}
{'train_runtime': 474.3254, 'train_samples_per_second': 1.687, 'train_steps_per_second': 0.422, 'train_loss': 1.3923714351654053, 'epoch': 0.32}
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 200/200 [07:54<00:00, 2.37s/it]
TrainOutput(global_step=200, training_loss=1.3923714351654053, metrics={'train_runtime': 474.3254, 'train_samples_per_second': 1.687, 'train_steps_per_second': 0.422, 'train_loss': 1.3923714351654053, 'epoch': 0.32})
```
### 3. Merge the adapter into the original model
Using the [export_merged_model.py](https://github.com/intel-analytics/BigDL/blob/main/python/llm/example/GPU/QLoRA-FineTuning/export_merged_model.py) to merge.
```
python ./export_merged_model.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --adapter_path ./outputs/checkpoint-200 --output_path ./outputs/checkpoint-200-merged
```
Then you can use `./outputs/checkpoint-200-merged` as a normal huggingface transformer model to do inference.
### 4. Use BigDL-LLM to verify the fine-tuning effect
Train more steps and try input sentence like `['quote'] -> [?]` to verify. For example, using `“QLoRA fine-tuning using BigDL-LLM 4bit optimizations on Intel CPU is Efficient and convenient” ->: ` to inference.
BigDL-LLM llama2 example [link](https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/llama2). Update the `LLAMA2_PROMPT_FORMAT = "{prompt}"`.
```bash
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt "“QLoRA fine-tuning using BigDL-LLM 4bit optimizations on Intel CPU is Efficient and convenient” ->:" --n-predict 20
```
#### Sample Output
Base_model output
```log
Inference time: 1.7017452716827393 s
-------------------- Prompt --------------------
“QLoRA fine-tuning using BigDL-LLM 4bit optimizations on Intel CPU is Efficient and convenient” ->:
-------------------- Output --------------------
“QLoRA fine-tuning using BigDL-LLM 4bit optimizations on Intel CPU is Efficient and convenient” ->: 💻 Fine-tuning a language model on a powerful device like an Intel CPU
```
Merged_model output
```log
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
Inference time: 2.864234209060669 s
-------------------- Prompt --------------------
“QLoRA fine-tuning using BigDL-LLM 4bit optimizations on Intel CPU is Efficient and convenient” ->:
-------------------- Output --------------------
“QLoRA fine-tuning using BigDL-LLM 4bit optimizations on Intel CPU is Efficient and convenient” ->: ['bigdl'] ['deep-learning'] ['distributed-computing'] ['intel'] ['optimization'] ['training'] ['training-speed']
```

View file

@ -0,0 +1,86 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import os
import transformers
from transformers import LlamaTokenizer
from peft import LoraConfig
from bigdl.llm.transformers.qlora import get_peft_model, prepare_model_for_kbit_training
from bigdl.llm.transformers import AutoModelForCausalLM
from datasets import load_dataset
import argparse
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-hf",
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--dataset', type=str, default="Abirate/english_quotes")
args = parser.parse_args()
model_path = args.repo_id_or_model_path
dataset_path = args.dataset
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
data = load_dataset(dataset_path)
def merge(row):
row['prediction'] = row['quote'] + ' ->: ' + str(row['tags'])
return row
data['train'] = data['train'].map(merge)
data = data.map(lambda samples: tokenizer(samples["prediction"]), batched=True)
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_low_bit="sym_int4",
optimize_model=False,
torch_dtype=torch.float16,
modules_to_not_convert=["lm_head"], )
model = model.to('cpu')
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=False)
model.enable_input_require_grads()
config = LoraConfig(
r=8,
lora_alpha=32,
target_modules=["q_proj", "k_proj", "v_proj"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
model = get_peft_model(model, config)
tokenizer.pad_token_id = 0
tokenizer.padding_side = "left"
trainer = transformers.Trainer(
model=model,
train_dataset=data["train"],
args=transformers.TrainingArguments(
per_device_train_batch_size=4,
gradient_accumulation_steps=1,
warmup_steps=20,
max_steps=200,
learning_rate=2e-4,
save_steps=100,
bf16=True,
logging_steps=20,
output_dir="outputs",
optim="adamw_hf", # paged_adamw_8bit is not supported yet
# gradient_checkpointing=True, # can further reduce memory but slower
),
data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
)
model.config.use_cache = False # silence the warnings. Please re-enable for inference!
result = trainer.train()
print(result)

View file

@ -7,6 +7,7 @@ This folder contains examples of running BigDL-LLM on Intel CPU:
- [Native-Models](Native-Models): converting & running LLM in `llama`/`chatglm`/`bloom`/`gptneox`/`starcoder` model family using native (cpp) implementation - [Native-Models](Native-Models): converting & running LLM in `llama`/`chatglm`/`bloom`/`gptneox`/`starcoder` model family using native (cpp) implementation
- [LangChain](LangChain): running LangChain applications on BigDL-LLM - [LangChain](LangChain): running LangChain applications on BigDL-LLM
- [Applications](Applications): running Transformers applications on BigDl-LLM - [Applications](Applications): running Transformers applications on BigDl-LLM
- [QLoRA-FineTuning](QLoRA-FineTuning): running QLoRA finetuning using BigDL-LLM on intel CPUs
## System Support ## System Support
**Hardware**: **Hardware**: