Update README.md (#10286)
This commit is contained in:
		
							parent
							
								
									bcfad555df
								
							
						
					
					
						commit
						14814abab8
					
				
					 2 changed files with 2 additions and 0 deletions
				
			
		| 
						 | 
				
			
			@ -12,6 +12,7 @@
 | 
			
		|||
> *It is built on the excellent work of [llama.cpp](https://github.com/ggerganov/llama.cpp), [bitsandbytes](https://github.com/TimDettmers/bitsandbytes), [qlora](https://github.com/artidoro/qlora), [gptq](https://github.com/IST-DASLab/gptq), [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ), [awq](https://github.com/mit-han-lab/llm-awq), [AutoAWQ](https://github.com/casper-hansen/AutoAWQ), [vLLM](https://github.com/vllm-project/vllm), [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), [gptq_for_llama](https://github.com/qwopqwop200/GPTQ-for-LLaMa), [chatglm.cpp](https://github.com/li-plus/chatglm.cpp), [redpajama.cpp](https://github.com/togethercomputer/redpajama.cpp), [gptneox.cpp](https://github.com/byroneverson/gptneox.cpp), [bloomz.cpp](https://github.com/NouamaneTazi/bloomz.cpp/), etc.*
 | 
			
		||||
 | 
			
		||||
### Latest update 🔥 
 | 
			
		||||
- [2024/02] `bigdl-llm` now supports directly loading model from [ModelScope](python/llm/example/GPU/ModelScope-Models) ([魔搭](python/llm/example/CPU/ModelScope-Models)).
 | 
			
		||||
- [2024/02] `bigdl-llm` added inital **INT2** support (based on llama.cpp [IQ2](python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/GGUF-IQ2) mechanism), which makes it possible to run large-size LLM (e.g., Mixtral-8x7B) on Intel GPU with 16GB VRAM.
 | 
			
		||||
- [2024/02] Users can now use `bigdl-llm` through [Text-Generation-WebUI](https://github.com/intel-analytics/text-generation-webui) GUI.
 | 
			
		||||
- [2024/02] `bigdl-llm` now supports *[Self-Speculative Decoding](https://bigdl.readthedocs.io/en/latest/doc/LLM/Inference/Self_Speculative_Decoding.html)*, which in practice brings **~30% speedup** for FP16 and BF16 inference latency on Intel [GPU](python/llm/example/GPU/Speculative-Decoding) and [CPU](python/llm/example/CPU/Speculative-Decoding) respectively.
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -24,6 +24,7 @@ BigDL-LLM
 | 
			
		|||
============================================
 | 
			
		||||
Latest update 🔥
 | 
			
		||||
============================================
 | 
			
		||||
- [2024/02] ``bigdl-llm`` now supports directly loading model from `ModelScope <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/ModelScope-Models>`_ (`魔搭 <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/CPU/ModelScope-Models>`_).
 | 
			
		||||
- [2024/02] ``bigdl-llm`` added inital **INT2** support (based on llama.cpp `IQ2 <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/GGUF-IQ2>`_ mechanism), which makes it possible to run large-size LLM (e.g., Mixtral-8x7B) on Intel GPU with 16GB VRAM.
 | 
			
		||||
- [2024/02] Users can now use ``bigdl-llm`` through `Text-Generation-WebUI <https://github.com/intel-analytics/text-generation-webui>`_ GUI.
 | 
			
		||||
- [2024/02] ``bigdl-llm`` now supports `Self-Speculative Decoding <doc/LLM/Inference/Self_Speculative_Decoding.html>`_, which in practice brings **~30% speedup** for FP16 and BF16 inference latency on Intel `GPU <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/Speculative-Decoding>`_ and `CPU <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/CPU/Speculative-Decoding>`_ respectively.
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue