Chatglm2 rope optimization on xpu (#9350)

This commit is contained in:
Xin Qiu 2023-11-06 13:56:34 +08:00 committed by GitHub
parent 833e4dbc8d
commit 1420e45cc0
2 changed files with 96 additions and 7 deletions

View file

@ -284,6 +284,7 @@ def _optimize_post(model):
from bigdl.llm.transformers.models.chatglm2 import chatglm2_attention_forward_8eb45c from bigdl.llm.transformers.models.chatglm2 import chatglm2_attention_forward_8eb45c
from bigdl.llm.transformers.models.chatglm2 import core_attn_forward_8eb45c from bigdl.llm.transformers.models.chatglm2 import core_attn_forward_8eb45c
from bigdl.llm.transformers.models.chatglm2 import chatglm_rms_norm_forward from bigdl.llm.transformers.models.chatglm2 import chatglm_rms_norm_forward
from bigdl.llm.transformers.models.chatglm2 import chatglm2_model_forward
convert_forward(model, convert_forward(model,
module.SelfAttention, module.SelfAttention,
chatglm2_attention_forward_8eb45c chatglm2_attention_forward_8eb45c
@ -291,6 +292,9 @@ def _optimize_post(model):
convert_forward(model, convert_forward(model,
module.CoreAttention, module.CoreAttention,
core_attn_forward_8eb45c) core_attn_forward_8eb45c)
convert_forward(model,
module.ChatGLMModel,
chatglm2_model_forward)
convert_forward(model, convert_forward(model,
module.RMSNorm, module.RMSNorm,
chatglm_rms_norm_forward) chatglm_rms_norm_forward)

View file

@ -18,8 +18,9 @@
# #
import torch import torch
from typing import Optional, Tuple, Union, List, Callable, Dict, Any from typing import Optional, Tuple, List
import torch.nn.functional as F import torch.nn.functional as F
from transformers.modeling_outputs import BaseModelOutputWithPast
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
@ -54,7 +55,7 @@ def split_tensor_along_last_dim(
@torch.jit.script @torch.jit.script
def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor: def apply_rotary_pos_emb_chatglm(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
# x: [sq, b, np, hn] # x: [sq, b, np, hn]
sq, b, np, hn = x.size(0), x.size(1), x.size(2), x.size(3) sq, b, np, hn = x.size(0), x.size(1), x.size(2), x.size(3)
rot_dim = rope_cache.shape[-2] * 2 rot_dim = rope_cache.shape[-2] * 2
@ -87,6 +88,77 @@ def chatglm_rms_norm_forward(self, hidden_states):
return hidden_states return hidden_states
def chatglm2_model_forward(
self,
input_ids,
position_ids: Optional[torch.Tensor]=None,
attention_mask: Optional[torch.BoolTensor]=None,
full_attention_mask: Optional[torch.BoolTensor]=None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]]=None,
inputs_embeds: Optional[torch.Tensor]=None,
use_cache: Optional[bool]=None,
output_hidden_states: Optional[bool]=None,
return_dict: Optional[bool]=None,
):
output_hidden_states = (
output_hidden_states if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, seq_length = input_ids.shape
if inputs_embeds is None:
inputs_embeds = self.embedding(input_ids)
if full_attention_mask is None:
if (attention_mask is not None and not attention_mask.all()) or (
past_key_values and seq_length != 1):
full_attention_mask = self.get_masks(input_ids,
past_key_values,
padding_mask=attention_mask)
use_fuse_rope = input_ids.device.type == "xpu"
use_fuse_rope = use_fuse_rope and not self.training
# Rotary positional embeddings
rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
if position_ids is not None:
rotary_pos_emb = rotary_pos_emb[position_ids]
else:
rotary_pos_emb = rotary_pos_emb[None, :seq_length]
if use_fuse_rope:
# Repeat cos sin here, call only once for each token.
# Chatglm2's rotary embedding is similar to gptj's, is rotate_every_two.
# If put this to attension forward, it will generate too many times.
cos, sin = rotary_pos_emb.split(rotary_pos_emb.shape[-1] // 2, dim=-1)
cos = cos.squeeze(-1)
sin = sin.squeeze(-1)
cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3)
sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3)
rotary_pos_emb = (cos, sin)
else:
rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous()
# Run encoder.
hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
inputs_embeds, full_attention_mask, rotary_pos_emb=rotary_pos_emb,
kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states
)
if not return_dict:
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions]
if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
def chatglm2_attention_forward_8eb45c( def chatglm2_attention_forward_8eb45c(
self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
): ):
@ -132,12 +204,26 @@ def chatglm2_attention_forward_8eb45c(
# [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn] # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
(query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3) (query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
cur_length, batch_size = query_layer.shape[0], query_layer.shape[1]
# apply relative positional encoding (rotary embedding) # apply relative positional encoding (rotary embedding)
if rotary_pos_emb is not None: if rotary_pos_emb is not None:
query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb) if len(rotary_pos_emb) == 2: # use_fuse_rope, see chatglm2_model_forward
key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb) cos, sin = rotary_pos_emb
rot_dim = cos.shape[-1]
cur_length, batch_size = query_layer.shape[0], query_layer.shape[1] query_layer = query_layer.transpose(0, 1)
key_layer = key_layer.transpose(0, 1)
query_layer_cur = query_layer[..., :rot_dim]
key_layer_cur = key_layer[..., :rot_dim]
# ipex's apply_rotary_embedding can change the origin storage, so query_layer will get
# the result directly.
torch.ops.torch_ipex.apply_rotary_embedding(query_layer_cur, sin, cos, query_layer_cur)
torch.ops.torch_ipex.apply_rotary_embedding(key_layer_cur, sin, cos, key_layer_cur)
query_layer = query_layer.transpose(0, 1)
key_layer = key_layer.transpose(0, 1)
else:
query_layer = apply_rotary_pos_emb_chatglm(query_layer, rotary_pos_emb)
key_layer = apply_rotary_pos_emb_chatglm(key_layer, rotary_pos_emb)
if self.multi_query_attention: if self.multi_query_attention:
key_length = key_layer.size(0) key_length = key_layer.size(0)
@ -200,7 +286,6 @@ def chatglm2_attention_forward_8eb45c(
# ================================== # ==================================
# core attention computation # core attention computation
# ================================== # ==================================
context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask) context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask)
# ================= # =================