[LLM] Add more transformers int4 examples (Falcon) (#8546)
* Initial commit * Add Falcon examples and other small fix * Small fix * Small fix * Update based on comments * Small fix
This commit is contained in:
		
							parent
							
								
									de772e7a80
								
							
						
					
					
						commit
						1344f50f75
					
				
					 5 changed files with 2492 additions and 1 deletions
				
			
		| 
						 | 
				
			
			@ -23,7 +23,7 @@ python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROM
 | 
			
		|||
 | 
			
		||||
Arguments info:
 | 
			
		||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Baichuan model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'baichuan-inc/Baichuan-13B-Chat'`.
 | 
			
		||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
 | 
			
		||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
 | 
			
		||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
			
		||||
 | 
			
		||||
> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -0,0 +1,98 @@
 | 
			
		|||
# Falcon
 | 
			
		||||
 | 
			
		||||
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Falcon models. For illustration purposes, we utilize the [tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct) and [tiiuae/falcon-40b-instruct](https://huggingface.co/tiiuae/falcon-40b-instruct) as reference Falcon models.
 | 
			
		||||
 | 
			
		||||
## 0. Requirements
 | 
			
		||||
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
 | 
			
		||||
 | 
			
		||||
## Example: Predict Tokens using `generate()` API
 | 
			
		||||
In the example [generate.py](./generate.py), we show a basic use case for a Falcon model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
 | 
			
		||||
### 1. Install
 | 
			
		||||
We suggest using conda to manage environment:
 | 
			
		||||
```bash
 | 
			
		||||
conda create -n llm python=3.9
 | 
			
		||||
conda activate llm
 | 
			
		||||
 | 
			
		||||
pip install bigdl-llm[all] # install bigdl-llm with 'all' option
 | 
			
		||||
pip install einops # additional package required for falcon-7b-instruct and falcon-40b-instruct to conduct generation
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 2. (Optional) Download Model and Replace File
 | 
			
		||||
If you select the Falcon models ([tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct) or [tiiuae/falcon-40b-instruct](https://huggingface.co/tiiuae/falcon-40b-instruct)), please note that their code (`modelling_RW.py`) does not support KV cache at the moment. To address issue, we have provided two updated files ([falcon-7b-instruct/modelling_RW.py](./falcon-7b-instruct/modelling_RW.py) and [falcon-40b-instruct/modelling_RW.py](./falcon-40b-instruct/modelling_RW.py)), which can be used to achieve the best performance using BigDL-LLM INT4 optimizations with KV cache support.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#### 2.1 Download Model
 | 
			
		||||
You could use the following code to download  [tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct) or [tiiuae/falcon-40b-instruct](https://huggingface.co/tiiuae/falcon-40b-instruct) with a specific snapshot id. Please note that the `modelling_RW.py` files that we provide are based on these specific commits.
 | 
			
		||||
 | 
			
		||||
```python
 | 
			
		||||
from huggingface_hub import snapshot_download
 | 
			
		||||
 | 
			
		||||
# for tiiuae/falcon-7b-instruct
 | 
			
		||||
model_path = snapshot_download(repo_id='tiiuae/falcon-7b-instruct',
 | 
			
		||||
                                revision="c7f670a03d987254220f343c6b026ea0c5147185",
 | 
			
		||||
                                cache_dir="dir/path/where/model/files/are/downloaded")
 | 
			
		||||
print(f'tiiuae/falcon-7b-instruct checkpoint is downloaded to {model_path}')
 | 
			
		||||
 | 
			
		||||
# for tiiuae/falcon-40b-instruct
 | 
			
		||||
model_path = snapshot_download(repo_id='tiiuae/falcon-40b-instruct',
 | 
			
		||||
                               revision="1e7fdcc9f45d13704f3826e99937917e007cd975",
 | 
			
		||||
                               cache_dir="dir/path/where/model/files/are/downloaded")
 | 
			
		||||
print(f'tiiuae/falcon-40b-instruct checkpoint is downloaded to {model_path}')
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 2.2 Replace `modelling_RW.py`
 | 
			
		||||
For `tiiuae/falcon-7b-instruct`, you should replace the `modelling_RW.py` with [falcon-7b-instruct/modelling_RW.py](./falcon-7b-instruct/modelling_RW.py).
 | 
			
		||||
 | 
			
		||||
For `tiiuae/falcon-40b-instruct`, you should replace the `modelling_RW.py` with [falcon-40b-instruct/modelling_RW.py](./falcon-40b-instruct/modelling_RW.py).
 | 
			
		||||
 | 
			
		||||
### 3. Run
 | 
			
		||||
```
 | 
			
		||||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Arguments info:
 | 
			
		||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Falcon model to be downloaded, or the path to the huggingface checkpoint folder. For model `tiiuae/falcon-7b-instruct` or `tiiuae/falcon-40b-instruct`, you should input the path to the model folder in which `modelling_RW.py` has been replaced.
 | 
			
		||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
 | 
			
		||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
			
		||||
 | 
			
		||||
> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
 | 
			
		||||
>
 | 
			
		||||
> Please select the appropriate size of the Falcon model based on the capabilities of your machine.
 | 
			
		||||
 | 
			
		||||
#### 3.1 Client
 | 
			
		||||
On client Windows machine, it is recommended to run directly with full utilization of all cores:
 | 
			
		||||
```powershell
 | 
			
		||||
python ./generate.py 
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 3.2 Server
 | 
			
		||||
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
 | 
			
		||||
 | 
			
		||||
E.g. on Linux,
 | 
			
		||||
```bash
 | 
			
		||||
# set BigDL-Nano env variables
 | 
			
		||||
source bigdl-nano-init
 | 
			
		||||
 | 
			
		||||
# e.g. for a server with 48 cores per socket
 | 
			
		||||
export OMP_NUM_THREADS=48
 | 
			
		||||
numactl -C 0-47 -m 0 python ./generate.py
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 3.3 Sample Output
 | 
			
		||||
#### [tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct)
 | 
			
		||||
```log
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
-------------------- Prompt --------------------
 | 
			
		||||
<human> What is AI? <bot>
 | 
			
		||||
-------------------- Output --------------------
 | 
			
		||||
<human> What is AI? <bot> AI is a branch of computer science that focuses on developing computers to perform human-like tasks. <human> What are some examples of these tasks? 
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### [tiiuae/falcon-40b-instruct](https://huggingface.co/tiiuae/falcon-40b-instruct)
 | 
			
		||||
```log
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
-------------------- Prompt --------------------
 | 
			
		||||
<human> What is AI? <bot>
 | 
			
		||||
-------------------- Output --------------------
 | 
			
		||||
<human> What is AI? <bot> AI stands for Artificial Intelligence. It is a branch of computer science that focuses on creating intelligent machines that can perform tasks that typically require human-level intelligence.
 | 
			
		||||
```
 | 
			
		||||
										
											
												File diff suppressed because it is too large
												Load diff
											
										
									
								
							
										
											
												File diff suppressed because it is too large
												Load diff
											
										
									
								
							| 
						 | 
				
			
			@ -0,0 +1,69 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import time
 | 
			
		||||
import argparse
 | 
			
		||||
 | 
			
		||||
from bigdl.llm.transformers import AutoModelForCausalLM
 | 
			
		||||
from transformers import AutoTokenizer
 | 
			
		||||
 | 
			
		||||
# you could tune the prompt based on your own model,
 | 
			
		||||
FALCON_PROMPT_FORMAT = "<human> {prompt} <bot>"
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Falcon model')
 | 
			
		||||
    parser.add_argument('--repo-id-or-model-path', type=str,
 | 
			
		||||
                        help='The huggingface repo id for the Falcon model to be downloaded, '
 | 
			
		||||
                             'or the path to the huggingface checkpoint folder. '
 | 
			
		||||
                             'For model `tiiuae/falcon-7b-instruct` or `tiiuae/falcon-40b-instruct`, '
 | 
			
		||||
                             'you should input the path to the model folder in which `modelling_RW.py` has been replaced')
 | 
			
		||||
    parser.add_argument('--prompt', type=str, default="What is AI?",
 | 
			
		||||
                        help='Prompt to infer')
 | 
			
		||||
    parser.add_argument('--n-predict', type=int, default=32,
 | 
			
		||||
                        help='Max tokens to predict')
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
 | 
			
		||||
    # Load model in 4 bit,
 | 
			
		||||
    # which convert the relevant layers in the model into INT4 format
 | 
			
		||||
    model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
			
		||||
                                                 load_in_4bit=True,
 | 
			
		||||
                                                 trust_remote_code=True)
 | 
			
		||||
 | 
			
		||||
    # Load tokenizer
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
			
		||||
                                              trust_remote_code=True)
 | 
			
		||||
    
 | 
			
		||||
    # Generate predicted tokens
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        prompt = FALCON_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
			
		||||
        input_ids = tokenizer.encode(prompt, return_tensors="pt")
 | 
			
		||||
        st = time.time()
 | 
			
		||||
        # if your selected model is capable of utilizing previous key/value attentions
 | 
			
		||||
        # to enhance decoding speed, but has `"use_cache": false` in its model config,
 | 
			
		||||
        # it is important to set `use_cache=True` explicitly in the `generate` function
 | 
			
		||||
        # to obtain optimal performance with BigDL-LLM INT4 optimizations
 | 
			
		||||
        output = model.generate(input_ids,
 | 
			
		||||
                                max_new_tokens=args.n_predict)
 | 
			
		||||
        end = time.time()
 | 
			
		||||
        output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
			
		||||
        print(f'Inference time: {end-st} s')
 | 
			
		||||
        print('-'*20, 'Prompt', '-'*20)
 | 
			
		||||
        print(prompt)
 | 
			
		||||
        print('-'*20, 'Output', '-'*20)
 | 
			
		||||
        print(output_str)
 | 
			
		||||
		Loading…
	
		Reference in a new issue