stablelm fp8 kv cache (#10672)
* stablelm fp8 kvcache * update * fix * change to fp8 matmul * fix style * fix * fix * meet code review * add comment
This commit is contained in:
parent
65127622aa
commit
1274cba79b
2 changed files with 244 additions and 30 deletions
|
|
@ -633,7 +633,7 @@ def _optimize_pre(model):
|
|||
del module.c_attn
|
||||
model.apply(split_qkv_proj_func)
|
||||
if model.config.model_type == "stablelm":
|
||||
# For stablelm-zephyr-3b
|
||||
# For stablelm-zephyr-3b and stablelm-2-zephyr-1_6b
|
||||
from ipex_llm.transformers.models.stablelm import merge_qkv
|
||||
model.apply(merge_qkv)
|
||||
|
||||
|
|
@ -1342,10 +1342,11 @@ def _optimize_post(model, lightweight_bmm=False):
|
|||
module.BertEncoder,
|
||||
encoder_forward)
|
||||
elif model.config.model_type == 'stablelm':
|
||||
# For stablelm-zephyr-3b
|
||||
# For stablelm-zephyr-3b and stablelm-2-zephyr-1_6b
|
||||
modeling_module_name = model.__class__.__module__
|
||||
module = importlib.import_module(modeling_module_name)
|
||||
from ipex_llm.transformers.models.stablelm import stablelm_attention_forward
|
||||
from ipex_llm.transformers.models.stablelm import stablelm_model_forward
|
||||
convert_forward(model,
|
||||
module.StableLmAttention,
|
||||
stablelm_attention_forward
|
||||
|
|
@ -1353,5 +1354,8 @@ def _optimize_post(model, lightweight_bmm=False):
|
|||
convert_forward(model,
|
||||
module.StableLmMLP,
|
||||
llama_mlp_forward)
|
||||
|
||||
convert_forward(model,
|
||||
module.StableLmModel,
|
||||
stablelm_model_forward
|
||||
)
|
||||
return model
|
||||
|
|
|
|||
|
|
@ -38,17 +38,20 @@
|
|||
#
|
||||
|
||||
import math
|
||||
from typing import Optional, Tuple
|
||||
from typing import Optional, Tuple, List, Union
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
from transformers.models.stablelm.modeling_stablelm import StableLmAttention
|
||||
from transformers.models.stablelm.modeling_stablelm import StableLmAttention, StableLmModel
|
||||
from transformers.modeling_outputs import BaseModelOutputWithPast
|
||||
|
||||
from ipex_llm.utils.common import invalidInputError
|
||||
from ipex_llm.transformers.models.utils import extend_kv_cache, append_kv_cache
|
||||
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb, \
|
||||
apply_rotary_pos_emb_cache_freq_xpu
|
||||
from ipex_llm.transformers.models.utils import init_fp8_kv_cache, append_fp8_kv_cache, \
|
||||
restore_fp8_kv_cache, use_quantize_kv_cache
|
||||
from ipex_llm.transformers.models.utils import is_enough_kv_cache_room_4_36
|
||||
from ipex_llm.transformers.models.utils import use_flash_attention, use_esimd_sdp
|
||||
from ipex_llm.transformers.models.mistral import should_use_fuse_rope, repeat_kv
|
||||
|
|
@ -87,7 +90,68 @@ def merge_qkv(module: torch.nn.Module):
|
|||
del module.q_proj, module.k_proj, module.v_proj
|
||||
|
||||
|
||||
def stablelm_model_forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||
from ipex_llm.transformers.kv import DynamicFp8Cache
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
if use_cache and use_quantize_kv_cache_stablelm(self.layers[0].self_attn.head_dim,
|
||||
self.layers[0].mlp.up_proj,
|
||||
input_ids):
|
||||
if not isinstance(past_key_values, DynamicFp8Cache):
|
||||
past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
|
||||
return StableLmModel.forward(
|
||||
self=self,
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_values=past_key_values,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
|
||||
|
||||
def use_quantize_kv_cache_stablelm(head_dim: int, linear: torch.nn.Module, x: torch.Tensor) -> bool:
|
||||
return (head_dim == 64 or head_dim == 128) and use_quantize_kv_cache(linear, x)
|
||||
|
||||
|
||||
def stablelm_attention_forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_value: Optional[Cache] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
if use_quantize_kv_cache_stablelm(self.head_dim, self.o_proj, hidden_states):
|
||||
forward_function = stablelm_attention_forward_quantized
|
||||
else:
|
||||
forward_function = stablelm_attention_forward_original
|
||||
return forward_function(
|
||||
self=self,
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_value=past_key_value,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
)
|
||||
|
||||
|
||||
def stablelm_attention_forward_original(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor]=None,
|
||||
|
|
@ -116,8 +180,7 @@ def stablelm_attention_forward(
|
|||
kv_seq_len = key_states.shape[-2]
|
||||
|
||||
if past_key_value is not None:
|
||||
if self.layer_idx is None:
|
||||
invalidInputError(False,
|
||||
invalidInputError(self.layer_idx is not None,
|
||||
"The cache structure has changed since version v4.36. "
|
||||
f"If you are using {self.__class__.__name__} for "
|
||||
"auto-regressive decodingwith k/v caching, please make sure "
|
||||
|
|
@ -134,6 +197,7 @@ def stablelm_attention_forward(
|
|||
key_states[..., self.rotary_emb.dim:],
|
||||
)
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
# [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
|
||||
if use_fuse_rope:
|
||||
query_rot, key_rot = apply_rotary_pos_emb_cache_freq_xpu(query_rot,
|
||||
key_rot,
|
||||
|
|
@ -142,7 +206,6 @@ def stablelm_attention_forward(
|
|||
"stablelm",
|
||||
position_ids)
|
||||
else:
|
||||
# [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
|
||||
query_rot, key_rot = apply_rotary_pos_emb(query_rot,
|
||||
key_rot,
|
||||
cos,
|
||||
|
|
@ -214,20 +277,16 @@ def stablelm_attention_forward(
|
|||
query_states,
|
||||
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||
|
||||
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
||||
invalidInputError(
|
||||
False,
|
||||
attn_weights.size() == (bsz, self.num_heads, q_len, kv_seq_len),
|
||||
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)},"
|
||||
f" but is {attn_weights.size()}"
|
||||
)
|
||||
f" but is {attn_weights.size()}")
|
||||
|
||||
if attention_mask is not None:
|
||||
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
||||
invalidInputError(
|
||||
False,
|
||||
attention_mask.size() == (bsz, 1, q_len, kv_seq_len),
|
||||
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)},"
|
||||
f" but is {attention_mask.size()}"
|
||||
)
|
||||
f" but is {attention_mask.size()}")
|
||||
|
||||
attn_weights = attn_weights + attention_mask
|
||||
|
||||
|
|
@ -238,12 +297,10 @@ def stablelm_attention_forward(
|
|||
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
|
||||
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
||||
invalidInputError(
|
||||
False,
|
||||
attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim),
|
||||
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)},"
|
||||
f" but is {attn_output.size()}"
|
||||
)
|
||||
f" but is {attn_output.size()}")
|
||||
|
||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||
|
|
@ -253,3 +310,156 @@ def stablelm_attention_forward(
|
|||
attn_weights = None
|
||||
|
||||
return attn_output.to(original_dtype), attn_weights, past_key_value
|
||||
|
||||
|
||||
def stablelm_attention_forward_quantized(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor]=None,
|
||||
position_ids: Optional[torch.LongTensor]=None,
|
||||
past_key_value: Optional[Cache]=None,
|
||||
output_attentions: bool=False,
|
||||
use_cache: bool=False,
|
||||
**kwargs
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
||||
bsz, q_len, hidden_size = hidden_states.size()
|
||||
device = hidden_states.device
|
||||
# for flash attention
|
||||
original_dtype = hidden_states.dtype
|
||||
|
||||
use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
|
||||
qkv = self.qkv_proj(hidden_states)
|
||||
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
|
||||
qkv = qkv.transpose(1, 2)
|
||||
query_states, key_states, value_states = qkv.split([self.num_heads,
|
||||
self.num_heads,
|
||||
self.num_heads], dim=1)
|
||||
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
if past_key_value is not None:
|
||||
invalidInputError(
|
||||
self.layer_idx is not None,
|
||||
f"The cache structure has changed since version v4.36. "
|
||||
"If you are using {self.__class__.__name__} "
|
||||
"for auto-regressive decoding with k/v caching, "
|
||||
"please make sure to initialize the attention class "
|
||||
"with a layer index."
|
||||
)
|
||||
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
||||
|
||||
# Partial rotary embedding
|
||||
query_rot, query_pass = (
|
||||
query_states[..., : self.rotary_emb.dim],
|
||||
query_states[..., self.rotary_emb.dim:],
|
||||
)
|
||||
key_rot, key_pass = (
|
||||
key_states[..., : self.rotary_emb.dim],
|
||||
key_states[..., self.rotary_emb.dim:],
|
||||
)
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
# [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
|
||||
if use_fuse_rope:
|
||||
query_rot, key_rot = apply_rotary_pos_emb_cache_freq_xpu(query_rot,
|
||||
key_rot,
|
||||
sin,
|
||||
cos,
|
||||
"stablelm",
|
||||
position_ids)
|
||||
else:
|
||||
query_rot, key_rot = apply_rotary_pos_emb(query_rot,
|
||||
key_rot,
|
||||
cos,
|
||||
sin,
|
||||
position_ids,
|
||||
"stablelm")
|
||||
|
||||
# [batch_size, seq_length, num_heads, head_dim]
|
||||
query_states = torch.cat((query_rot, query_pass), dim=-1)
|
||||
key_states = torch.cat((key_rot, key_pass), dim=-1)
|
||||
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
if len(past_key_value.key_cache) <= self.layer_idx:
|
||||
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
|
||||
attn_weights = attn_weights / math.sqrt(self.head_dim)
|
||||
|
||||
invalidInputError(
|
||||
attn_weights.size() == (bsz, self.num_heads, q_len, kv_seq_len),
|
||||
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}"
|
||||
f", but is {attn_weights.size()}")
|
||||
|
||||
if attention_mask is not None:
|
||||
invalidInputError(
|
||||
attention_mask.size() == (bsz, 1, q_len, kv_seq_len),
|
||||
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)},"
|
||||
f" but is {attention_mask.size()}")
|
||||
attn_weights = attn_weights + attention_mask
|
||||
|
||||
# at inference time, for memory considerations, may not need to upcast attention to fp32
|
||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1).to(query_states.dtype)
|
||||
attn_weights = self.attention_dropout(attn_weights)
|
||||
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
|
||||
invalidInputError(
|
||||
attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim),
|
||||
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}"
|
||||
f", but is {attn_output.size()}")
|
||||
if use_cache:
|
||||
cache_kwargs = None
|
||||
key_states, value_states = past_key_value.update(key_states, value_states,
|
||||
self.layer_idx, cache_kwargs)
|
||||
else:
|
||||
cache_kwargs = None # Specific to RoPE models
|
||||
key_states, value_states = past_key_value.update(key_states, value_states,
|
||||
self.layer_idx, cache_kwargs)
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
if query_states.size(2) != 1 or query_states.device.type != 'xpu':
|
||||
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
|
||||
query_states.dtype)
|
||||
# repeat k/v heads if n_kv_heads < n_heads
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
|
||||
else:
|
||||
import linear_q4_0
|
||||
attn_weights = linear_q4_0.query_key_fp8_matmul(query_states, key_states)
|
||||
|
||||
attn_weights = attn_weights / math.sqrt(self.head_dim)
|
||||
|
||||
invalidInputError(
|
||||
attn_weights.size() == (bsz, self.num_heads, q_len, kv_seq_len),
|
||||
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}"
|
||||
f", but is {attn_weights.size()}")
|
||||
|
||||
if attention_mask is not None:
|
||||
invalidInputError(
|
||||
attention_mask.size() == (bsz, 1, q_len, kv_seq_len),
|
||||
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)},"
|
||||
f" but is {attention_mask.size()}")
|
||||
attn_weights = attn_weights + attention_mask
|
||||
|
||||
# at inference time, for memory considerations, may not need to upcast attention to fp32
|
||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
||||
attn_weights = self.attention_dropout(attn_weights)
|
||||
|
||||
if query_states.size(2) != 1 or query_states.device.type != 'xpu':
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
else:
|
||||
import linear_q4_0
|
||||
attn_output = linear_q4_0.attn_value_fp8_matmul(attn_weights,
|
||||
value_states.transpose(-1, -2))
|
||||
|
||||
attn_output_size = (bsz, self.num_heads, q_len, self.head_dim)
|
||||
invalidInputError(attn_output.size() == attn_output_size,
|
||||
f"`attn_output` should be of size {attn_output_size},"
|
||||
f" but is {attn_output.size()}")
|
||||
|
||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||
|
||||
attn_output = self.o_proj(attn_output)
|
||||
|
||||
if not output_attentions:
|
||||
attn_weights = None
|
||||
|
||||
return attn_output.to(original_dtype), attn_weights, past_key_value
|
||||
|
|
|
|||
Loading…
Reference in a new issue