diff --git a/python/llm/example/CPU/ModelScope-Models/README.md b/python/llm/example/CPU/ModelScope-Models/README.md new file mode 100644 index 00000000..05c0e3b4 --- /dev/null +++ b/python/llm/example/CPU/ModelScope-Models/README.md @@ -0,0 +1,78 @@ +# Run ModelScope Model + +In this directory, you will find example on how you could apply BigDL-LLM INT4 optimizations on ModelScope models. For illustration purposes, we utilize the [ZhipuAI/chatglm3-6b](https://modelscope.cn/models/ZhipuAI/chatglm3-6b/summary) as a reference ModelScope model. + +## 0. Requirements +To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. + +## Example: Predict Tokens using `generate()` API +In the example [generate.py](./generate.py), we show a basic use case for a ChatGLM3 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations. +### 1. Install +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.9 +conda activate llm + +pip install --pre --upgrade bigdl-llm[all] # install bigdl-llm with 'all' option +pip install modelscope +``` + +### 2. Run +``` +python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT +``` + +Arguments info: +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the ModelScope repo id for the ModelScope ChatGLM3 model to be downloaded, or the path to the ModelScope checkpoint folder. It is default to be `'ZhipuAI/chatglm3-6b'`. +- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`. +- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. + +> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference. +> +> Please select the appropriate size of the ChatGLM3 model based on the capabilities of your machine. + +#### 2.1 Client +On client Windows machine, it is recommended to run directly with full utilization of all cores: +```powershell +python ./generate.py +``` + +#### 2.2 Server +For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket. + +E.g. on Linux, +```bash +# set BigDL-LLM env variables +source bigdl-llm-init + +# e.g. for a server with 48 cores per socket +export OMP_NUM_THREADS=48 +numactl -C 0-47 -m 0 python ./generate.py +``` + +#### 2.3 Sample Output +#### [ZhipuAI/chatglm3-6b](https://modelscope.cn/models/ZhipuAI/chatglm3-6b/summary) +```log +Inference time: xxxx s +-------------------- Prompt -------------------- +<|user|> +AI是什么? +<|assistant|> +-------------------- Output -------------------- +[gMASK]sop <|user|> +AI是什么? +<|assistant|> AI是人工智能(Artificial Intelligence)的缩写,指的是通过计算机程序和算法模拟人类智能的技术。AI可以帮助我们解决各种问题,例如语音 +``` + +```log +Inference time: xxxx s +-------------------- Prompt -------------------- +<|user|> +What is AI? +<|assistant|> +-------------------- Output -------------------- +[gMASK]sop <|user|> +What is AI? +<|assistant|> +AI stands for Artificial Intelligence. It refers to the development of computer systems that can perform tasks that would normally require human intelligence, such as recognizing speech or making +``` diff --git a/python/llm/example/CPU/ModelScope-Models/generate.py b/python/llm/example/CPU/ModelScope-Models/generate.py new file mode 100644 index 00000000..3fef46fd --- /dev/null +++ b/python/llm/example/CPU/ModelScope-Models/generate.py @@ -0,0 +1,71 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import torch +import time +import argparse +import numpy as np + +from bigdl.llm.transformers import AutoModel +from modelscope import AutoTokenizer + +# you could tune the prompt based on your own model, +# here the prompt tuning refers to https://github.com/THUDM/ChatGLM3/blob/main/PROMPT.md +CHATGLM_V3_PROMPT_FORMAT = "<|user|>\n{prompt}\n<|assistant|>" + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for ModelScope ChatGLM3 model') + parser.add_argument('--repo-id-or-model-path', type=str, default="ZhipuAI/chatglm3-6b", + help='The ModelScope repo id for the ChatGLM3 model to be downloaded' + ', or the path to the ModelScope checkpoint folder') + parser.add_argument('--prompt', type=str, default="AI是什么?", + help='Prompt to infer') + parser.add_argument('--n-predict', type=int, default=32, + help='Max tokens to predict') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + + # Load model in 4 bit, + # which convert the relevant layers in the model into INT4 format + # It is important to set `model_hub='modelscope'`, otherwise model hub is default to be huggingface + model = AutoModel.from_pretrained(model_path, + load_in_4bit=True, + trust_remote_code=True, + model_hub='modelscope') + + # Load tokenizer + tokenizer = AutoTokenizer.from_pretrained(model_path, + trust_remote_code=True) + + # Generate predicted tokens + with torch.inference_mode(): + prompt = CHATGLM_V3_PROMPT_FORMAT.format(prompt=args.prompt) + input_ids = tokenizer.encode(prompt, return_tensors="pt") + st = time.time() + # if your selected model is capable of utilizing previous key/value attentions + # to enhance decoding speed, but has `"use_cache": false` in its model config, + # it is important to set `use_cache=True` explicitly in the `generate` function + # to obtain optimal performance with BigDL-LLM INT4 optimizations + output = model.generate(input_ids, + max_new_tokens=args.n_predict) + end = time.time() + output_str = tokenizer.decode(output[0], skip_special_tokens=True) + print(f'Inference time: {end-st} s') + print('-'*20, 'Prompt', '-'*20) + print(prompt) + print('-'*20, 'Output', '-'*20) + print(output_str) diff --git a/python/llm/example/CPU/README.md b/python/llm/example/CPU/README.md index a1ce8091..2f86dc82 100644 --- a/python/llm/example/CPU/README.md +++ b/python/llm/example/CPU/README.md @@ -5,11 +5,13 @@ This folder contains examples of running BigDL-LLM on Intel CPU: - [HF-Transformers-AutoModels](HF-Transformers-AutoModels): running any ***Hugging Face Transformers*** model on BigDL-LLM (using the standard AutoModel APIs) - [QLoRA-FineTuning](QLoRA-FineTuning): running ***QLoRA finetuning*** using BigDL-LLM on intel CPUs - [vLLM-Serving](vLLM-Serving): running ***vLLM*** serving framework on intel CPUs (with BigDL-LLM low-bit optimized models) -- [Deepspeed-AutoTP](https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/CPU/Deepspeed-AutoTP): running distributed inference using ***DeepSpeed AutoTP*** (with BigDL-LLM low-bit optimized models) +- [Deepspeed-AutoTP](Deepspeed-AutoTP): running distributed inference using ***DeepSpeed AutoTP*** (with BigDL-LLM low-bit optimized models) - [LangChain](LangChain): running ***LangChain*** applications on BigDL-LLM - [Applications](Applications): running LLM applications (such as agent, streaming-llm) on BigDl-LLM - [PyTorch-Models](PyTorch-Models): running any PyTorch model on BigDL-LLM (with "one-line code change") - [Native-Models](Native-Models): converting & running LLM in `llama`/`chatglm`/`bloom`/`gptneox`/`starcoder` model family using native (cpp) implementation +- [Speculative-Decoding](Speculative-Decoding): running any ***Hugging Face Transformers*** model with ***self-speculative decoding*** on Intel CPUs +- [ModelScope-Models](ModelScope-Models): running ***ModelScope*** model with BigDL-LLM on Intel CPUs ## System Support diff --git a/python/llm/example/GPU/ModelScope-Models/README.md b/python/llm/example/GPU/ModelScope-Models/README.md new file mode 100644 index 00000000..1ba31567 --- /dev/null +++ b/python/llm/example/GPU/ModelScope-Models/README.md @@ -0,0 +1,135 @@ +# Run ModelScope Model + +In this directory, you will find example on how you could apply BigDL-LLM INT4 optimizations on ModelScope models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [ZhipuAI/chatglm3-6b](https://modelscope.cn/models/ZhipuAI/chatglm3-6b/summary) as a reference ModelScope model. + +## 0. Requirements +To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. + +## Example: Predict Tokens using `generate()` API +In the example [generate.py](./generate.py), we show a basic use case for a ChatGLM3 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs. +### 1. Install +#### 1.1 Installation on Linux +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.9 +conda activate llm +# below command will install intel_extension_for_pytorch==2.1.10+xpu as default +pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu +pip install modelscope +``` + +#### 1.2 Installation on Windows +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.9 libuv +conda activate llm +# below command will install intel_extension_for_pytorch==2.1.10+xpu as default +pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu +pip install modelscope +``` + +### 2. Configures OneAPI environment variables +#### 2.1 Configurations for Linux +```bash +source /opt/intel/oneapi/setvars.sh +``` + +#### 2.2 Configurations for Windows +```cmd +call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" +``` +> Note: Please make sure you are using **CMD** (**Anaconda Prompt** if using conda) to run the command as PowerShell is not supported. + +### 3. Runtime Configurations +For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device. +#### 3.1 Configurations for Linux +
+ +For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series +```bash +export USE_XETLA=OFF +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +``` + +
+ +
+ +For Intel Data Center GPU Max Series + +```bash +export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +export ENABLE_SDP_FUSION=1 +``` +> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`. +
+ +#### 3.2 Configurations for Windows +
+ +For Intel iGPU + +```cmd +set SYCL_CACHE_PERSISTENT=1 +set BIGDL_LLM_XMX_DISABLED=1 +``` + +
+ +
+ +For Intel Arc™ A300-Series or Pro A60 + +```cmd +set SYCL_CACHE_PERSISTENT=1 +``` + +
+ +
+ +For other Intel dGPU Series + +There is no need to set further environment variables. + +
+ +> Note: For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile. +### 4. Running examples + +``` +python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT +``` + +Arguments info: +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the ModelScope repo id for the ModelScope ChatGLM3 model to be downloaded, or the path to the ModelScope checkpoint folder. It is default to be `'ZhipuAI/chatglm3-6b'`. +- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`. +- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. + +#### Sample Output +#### [ZhipuAI/chatglm3-6b](https://modelscope.cn/models/ZhipuAI/chatglm3-6b/summary) +```log +Inference time: xxxx s +-------------------- Prompt -------------------- +<|user|> +AI是什么? +<|assistant|> +-------------------- Output -------------------- +[gMASK]sop <|user|> +AI是什么? +<|assistant|> AI是人工智能(Artificial Intelligence)的缩写,指的是通过计算机程序和算法模拟人类智能的技术。AI可以帮助我们解决各种问题,例如语音 +``` + +```log +Inference time: xxxx s +-------------------- Prompt -------------------- +<|user|> +What is AI? +<|assistant|> +-------------------- Output -------------------- +[gMASK]sop <|user|> +What is AI? +<|assistant|> +AI stands for Artificial Intelligence. It refers to the development of computer systems that can perform tasks that would normally require human intelligence, such as recognizing speech or making +``` diff --git a/python/llm/example/GPU/ModelScope-Models/generate.py b/python/llm/example/GPU/ModelScope-Models/generate.py new file mode 100644 index 00000000..48bce466 --- /dev/null +++ b/python/llm/example/GPU/ModelScope-Models/generate.py @@ -0,0 +1,82 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import torch +import time +import argparse +import numpy as np + +from bigdl.llm.transformers import AutoModel +from modelscope import AutoTokenizer + +# you could tune the prompt based on your own model, +# here the prompt tuning refers to https://github.com/THUDM/ChatGLM3/blob/main/PROMPT.md +CHATGLM_V3_PROMPT_FORMAT = "<|user|>\n{prompt}\n<|assistant|>" + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for ChatGLM3 model') + parser.add_argument('--repo-id-or-model-path', type=str, default="ZhipuAI/chatglm3-6b", + help='The ModelScope repo id for the ChatGLM3 model to be downloaded' + ', or the path to the ModelScope checkpoint folder') + parser.add_argument('--prompt', type=str, default="AI是什么?", + help='Prompt to infer') + parser.add_argument('--n-predict', type=int, default=32, + help='Max tokens to predict') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + + # Load model in 4 bit, + # which convert the relevant layers in the model into INT4 format + # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function. + # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU. + # It is important to set `model_hub='modelscope'`, otherwise model hub is default to be huggingface + model = AutoModel.from_pretrained(model_path, + load_in_4bit=True, + optimize_model=True, + trust_remote_code=True, + use_cache=True, + model_hub='modelscope') + model = model.to('xpu') + + # Load tokenizer + tokenizer = AutoTokenizer.from_pretrained(model_path, + trust_remote_code=True) + + # Generate predicted tokens + with torch.inference_mode(): + prompt = CHATGLM_V3_PROMPT_FORMAT.format(prompt=args.prompt) + input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu') + # ipex model needs a warmup, then inference time can be accurate + output = model.generate(input_ids, + max_new_tokens=args.n_predict) + + # start inference + st = time.time() + # if your selected model is capable of utilizing previous key/value attentions + # to enhance decoding speed, but has `"use_cache": false` in its model config, + # it is important to set `use_cache=True` explicitly in the `generate` function + # to obtain optimal performance with BigDL-LLM INT4 optimizations + output = model.generate(input_ids, + max_new_tokens=args.n_predict) + torch.xpu.synchronize() + end = time.time() + output_str = tokenizer.decode(output[0], skip_special_tokens=True) + print(f'Inference time: {end-st} s') + print('-'*20, 'Prompt', '-'*20) + print(prompt) + print('-'*20, 'Output', '-'*20) + print(output_str) diff --git a/python/llm/example/GPU/README.md b/python/llm/example/GPU/README.md index f72dd80d..5e18af8a 100644 --- a/python/llm/example/GPU/README.md +++ b/python/llm/example/GPU/README.md @@ -2,11 +2,14 @@ This folder contains examples of running BigDL-LLM on Intel GPU: +- [Applications](Applications): running LLM applications (such as autogen) on BigDL-LLM - [HF-Transformers-AutoModels](HF-Transformers-AutoModels): running any ***Hugging Face Transformers*** model on BigDL-LLM (using the standard AutoModel APIs) - [LLM-Finetuning](LLM-Finetuning): running ***finetuning*** (such as LoRA, QLoRA, QA-LoRA, etc) using BigDL-LLM on Intel GPUs - [vLLM-Serving](vLLM-Serving): running ***vLLM*** serving framework on intel GPUs (with BigDL-LLM low-bit optimized models) - [Deepspeed-AutoTP](Deepspeed-AutoTP): running distributed inference using ***DeepSpeed AutoTP*** (with BigDL-LLM low-bit optimized models) on Intel GPUs - [PyTorch-Models](PyTorch-Models): running any PyTorch model on BigDL-LLM (with "one-line code change") +- [Speculative-Decoding](Speculative-Decoding): running any ***Hugging Face Transformers*** model with ***self-speculative decoding*** on Intel GPUs +- [ModelScope-Models](ModelScope-Models): running ***ModelScope*** model with BigDL-LLM on Intel GPUs ## System Support