[LLM] llm transformers format interface first part (#8276)

* llm-transformers-format

* update

* fix style
This commit is contained in:
Yina Chen 2023-06-06 17:17:37 +08:00 committed by GitHub
parent a3f353b939
commit 11cd2a07e0
4 changed files with 118 additions and 9 deletions

View file

@ -0,0 +1,22 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This would makes sure Python is aware there is more than one sub-package within bigdl,
# physically located elsewhere.
# Otherwise there would be module not found error in non-pip's setting as Python would
# only search the first bigdl package and end up finding only one sub-package.
from .utils import GenerationMixin

View file

@ -0,0 +1,86 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This would makes sure Python is aware there is more than one sub-package within bigdl,
# physically located elsewhere.
# Otherwise there would be module not found error in non-pip's setting as Python would
# only search the first bigdl package and end up finding only one sub-package.
from typing import Optional, Union, Sequence, List
from bigdl.llm.utils.common import invalidInputError
from bigdl.llm.ggml.model.gptneox import gptneox_cpp
class GenerationMixin:
"""
A class containing all functions for auto-regressive text generation
Pass custom parameter values to 'generate' .
"""
def generate(
self,
inputs: Union[Optional[Sequence[int]], Sequence[gptneox_cpp.gptneox_token]]=None,
max_new_tokens: int = 128,
top_k: int = 40,
top_p: float = 0.95,
temperature: float = 0.80,
repetition_penalty: float = 1.1,
reset: bool = True,
frequency_penalty: float = 0.0,
presence_penalty: float = 0.0,
tfs_z: float = 1.0,
mirostat_mode: int = 0,
mirostat_tau: float = 5.0,
mirostat_eta: float = 0.1,
stop: Optional[Union[str, List[str]]]=[],
**kwargs,
) -> Union[Optional[Sequence[int]], Optional[Sequence[gptneox_cpp.gptneox_token]], None]:
# TODO: modify docs
"""Create a generator of tokens from a prompt.
Examples:
>>> llama = Llama("models/ggml-7b.bin")
>>> tokens = llama.tokenize(b"Hello, world!")
>>> for token in llama.generate(tokens, top_k=40, top_p=0.95,
>>> temp=1.0, repeat_penalty=1.1):
... print(llama.detokenize([token]))
Args:
tokens: The prompt tokens.
top_k: The top-k sampling parameter.
top_p: The top-p sampling parameter.
temp: The temperature parameter.
repeat_penalty: The repeat penalty parameter.
reset: Whether to reset the model state.
Yields:
The generated tokens.
"""
# TODO: stop & max_token
self._generate(tokens=inputs,
top_k=top_k,
top_p=top_p,
temp=temperature,
repeat_penalty=repetition_penalty,
reset=reset,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty,
tfs_z=tfs_z,
mirostat_mode=mirostat_mode,
mirostat_tau=mirostat_tau,
mirostat_eta=mirostat_eta,
**kwargs)

View file

@ -497,13 +497,13 @@ class Gptneox:
mirostat_eta=gptneox_cpp.c_float(mirostat_eta),
)
def generate(
def _generate(
self,
tokens: Sequence[gptneox_cpp.gptneox_token],
top_k: int,
top_p: float,
temp: float,
repeat_penalty: float,
top_k: int = 40,
top_p: float = 0.95,
temp: float = 0.80,
repeat_penalty: float = 1.1,
reset: bool = True,
frequency_penalty: float = 0.0,
presence_penalty: float = 0.0,
@ -700,7 +700,7 @@ class Gptneox:
finish_reason = "length"
multibyte_fix = 0
for token in self.generate(
for token in self._generate(
prompt_tokens,
top_k=top_k,
top_p=top_p,

View file

@ -55,6 +55,7 @@ import multiprocessing
from typing import List, Optional, Union, Generator, Sequence, Iterator, Deque, Tuple
from collections import deque, OrderedDict
from bigdl.llm.utils.common import invalidInputError
from bigdl.llm.ggml.model.generation import GenerationMixin
from . import llama_cpp
from .llama_types import *
@ -119,7 +120,7 @@ class LlamaState:
self.llama_state_size = llama_state_size
class Llama:
class Llama(GenerationMixin):
"""High-level Python wrapper for a llama.cpp model."""
def __init__(
@ -515,7 +516,7 @@ class Llama:
penalize_nl=penalize_nl,
)
def generate(
def _generate(
self,
tokens: Sequence[int],
top_k: int = 40,
@ -730,7 +731,7 @@ class Llama:
finish_reason = "length"
multibyte_fix = 0
for token in self.generate(
for token in self._generate(
prompt_tokens,
top_k=top_k,
top_p=top_p,