parent
dbbdb53a18
commit
0f82b8c3a0
2 changed files with 7 additions and 4 deletions
|
|
@ -17,7 +17,7 @@ conda activate llm
|
|||
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
|
||||
# you can install specific ipex/torch version for your need
|
||||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
|
||||
pip install transformers==4.34.0
|
||||
pip install datasets transformers==4.34.0
|
||||
pip install peft==0.5.0
|
||||
pip install accelerate==0.23.0
|
||||
```
|
||||
|
|
|
|||
|
|
@ -48,7 +48,9 @@ if __name__ == "__main__":
|
|||
torch_dtype=torch.float16,
|
||||
modules_to_not_convert=["lm_head"],)
|
||||
model = model.to('xpu')
|
||||
model.gradient_checkpointing_enable()
|
||||
# Enable gradient_checkpointing if your memory is not enough,
|
||||
# it will slowdown the training speed
|
||||
# model.gradient_checkpointing_enable()
|
||||
model = prepare_model_for_kbit_training(model)
|
||||
config = LoraConfig(
|
||||
r=8,
|
||||
|
|
@ -69,9 +71,10 @@ if __name__ == "__main__":
|
|||
gradient_accumulation_steps= 1,
|
||||
warmup_steps=20,
|
||||
max_steps=200,
|
||||
learning_rate=2e-4,
|
||||
learning_rate=2e-5,
|
||||
save_steps=100,
|
||||
fp16=True,
|
||||
# fp16=True,
|
||||
bf16=True, # bf16 is more stable in training
|
||||
logging_steps=20,
|
||||
output_dir="outputs",
|
||||
optim="adamw_hf", # paged_adamw_8bit is not supported yet
|
||||
|
|
|
|||
Loading…
Reference in a new issue