ChatGLM Examples Restructure regarding Installation Steps (#11285)

* merge install step in glm examples

* fix section

* fix section

* fix tiktoken
This commit is contained in:
Jin Qiao 2024-06-14 12:37:05 +08:00 committed by GitHub
parent 91965b5d05
commit 0e7a31a09c
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
10 changed files with 98 additions and 635 deletions

View file

@ -5,9 +5,7 @@ In this directory, you will find examples on how you could apply IPEX-LLM INT4 o
## 0. Requirements
To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example 1: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a ChatGLM2 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations.
### 1. Install
## 1. Install
We suggest using conda to manage environment:
On Linux:
@ -29,7 +27,11 @@ conda activate llm
pip install --pre --upgrade ipex-llm[all]
```
### 2. Run
## 2. Run
### Example 1: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a ChatGLM2 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations.
```
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```
@ -63,7 +65,7 @@ numactl -C 0-47 -m 0 python ./generate.py
```
#### 2.3 Sample Output
#### [THUDM/chatglm2-6b](https://huggingface.co/THUDM/chatglm2-6b)
##### [THUDM/chatglm2-6b](https://huggingface.co/THUDM/chatglm2-6b)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
@ -88,31 +90,9 @@ Inference time: xxxx s
答: Artificial Intelligence (AI) refers to the ability of a computer or machine to perform tasks that typically require human-like intelligence, such as understanding language, recognizing patterns
```
## Example 2: Stream Chat using `stream_chat()` API
### Example 2: Stream Chat using `stream_chat()` API
In the example [streamchat.py](./streamchat.py), we show a basic use case for a ChatGLM2 model to stream chat, with IPEX-LLM INT4 optimizations.
### 1. Install
We suggest using conda to manage environment:
On Linux:
```bash
conda create -n llm python=3.11 # recommend to use Python 3.11
conda activate llm
# install the latest ipex-llm nightly build with 'all' option
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
```
On Windows:
```cmd
conda create -n llm python=3.11
conda activate llm
pip install --pre --upgrade ipex-llm[all]
```
### 2. Run
**Stream Chat using `stream_chat()` API**:
```
python ./streamchat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --question QUESTION

View file

@ -5,9 +5,7 @@ In this directory, you will find examples on how you could apply IPEX-LLM INT4 o
## 0. Requirements
To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example 1: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a ChatGLM3 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations.
### 1. Install
## 1. Install
We suggest using conda to manage environment:
On Linux:
@ -29,7 +27,11 @@ conda activate llm
pip install --pre --upgrade ipex-llm[all]
```
### 2. Run
## 2. Run
### Example 1: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a ChatGLM3 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations.
```
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```
@ -63,7 +65,7 @@ numactl -C 0-47 -m 0 python ./generate.py
```
#### 2.3 Sample Output
#### [THUDM/chatglm3-6b](https://huggingface.co/THUDM/chatglm3-6b)
##### [THUDM/chatglm3-6b](https://huggingface.co/THUDM/chatglm3-6b)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
@ -89,31 +91,9 @@ What is AI?
AI stands for Artificial Intelligence. It refers to the development of computer systems that can perform tasks that would normally require human intelligence, such as recognizing speech or making
```
## Example 2: Stream Chat using `stream_chat()` API
### Example 2: Stream Chat using `stream_chat()` API
In the example [streamchat.py](./streamchat.py), we show a basic use case for a ChatGLM3 model to stream chat, with IPEX-LLM INT4 optimizations.
### 1. Install
We suggest using conda to manage environment:
On Linux:
```bash
conda create -n llm python=3.11 # recommend to use Python 3.11
conda activate llm
# install the latest ipex-llm nightly build with 'all' option
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
```
On Windows:
```cmd
conda create -n llm python=3.11
conda activate llm
pip install --pre --upgrade ipex-llm[all]
```
### 2. Run
**Stream Chat using `stream_chat()` API**:
```
python ./streamchat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --question QUESTION

View file

@ -5,9 +5,7 @@ In this directory, you will find examples on how you could apply IPEX-LLM INT4 o
## 0. Requirements
To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example 1: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a GLM-4 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations.
### 1. Install
## 1. Install
We suggest using conda to manage environment:
On Linux:
@ -20,7 +18,7 @@ conda activate llm
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
# install tiktoken required for GLM-4
pip install tiktoken
pip install "tiktoken>=0.7.0"
```
On Windows:
@ -31,10 +29,14 @@ conda activate llm
pip install --pre --upgrade ipex-llm[all]
pip install tiktoken
pip install "tiktoken>=0.7.0"
```
### 2. Run
## 2. Run
### Example 1: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a GLM-4 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations.
```
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```
@ -95,36 +97,9 @@ What is AI?
Artificial Intelligence (AI) refers to the simulation of human intelligence in machines that are programmed to think like humans and mimic their actions. The term "art
```
## Example 2: Stream Chat using `stream_chat()` API
### Example 2: Stream Chat using `stream_chat()` API
In the example [streamchat.py](./streamchat.py), we show a basic use case for a GLM-4 model to stream chat, with IPEX-LLM INT4 optimizations.
### 1. Install
We suggest using conda to manage environment:
On Linux:
```bash
conda create -n llm python=3.11 # recommend to use Python 3.11
conda activate llm
# install the latest ipex-llm nightly build with 'all' option
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
# install tiktoken required for GLM-4
pip install tiktoken
```
On Windows:
```cmd
conda create -n llm python=3.11
conda activate llm
pip install --pre --upgrade ipex-llm[all]
pip install tiktoken
```
### 2. Run
**Stream Chat using `stream_chat()` API**:
```
python ./streamchat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --question QUESTION

View file

@ -21,7 +21,7 @@ conda activate llm
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
# install tiktoken required for GLM-4
pip install tiktoken
pip install "tiktoken>=0.7.0"
```
On Windows:
@ -32,7 +32,7 @@ conda activate llm
pip install --pre --upgrade ipex-llm[all]
pip install tiktoken
pip install "tiktoken>=0.7.0"
```
### 2. Run

View file

@ -5,11 +5,8 @@ In this directory, you will find examples on how you could apply IPEX-LLM INT4 o
## 0. Requirements
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
## Example 1: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a ChatGLM2 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
### 1. Install
#### 1.1 Installation on Linux
## 1. Install
### 1.1 Installation on Linux
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11
@ -18,7 +15,7 @@ conda activate llm
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
```
#### 1.2 Installation on Windows
### 1.2 Installation on Windows
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11 libuv
@ -28,7 +25,7 @@ conda activate llm
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
```
### 2. Configures OneAPI environment variables for Linux
## 2. Configures OneAPI environment variables for Linux
> [!NOTE]
> Skip this step if you are running on Windows.
@ -39,9 +36,9 @@ This is a required step on Linux for APT or offline installed oneAPI. Skip this
source /opt/intel/oneapi/setvars.sh
```
### 3. Runtime Configurations
## 3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 3.1 Configurations for Linux
### 3.1 Configurations for Linux
<details>
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
@ -78,7 +75,7 @@ export BIGDL_LLM_XMX_DISABLED=1
</details>
#### 3.2 Configurations for Windows
### 3.2 Configurations for Windows
<details>
<summary>For Intel iGPU</summary>
@ -103,7 +100,11 @@ set SYCL_CACHE_PERSISTENT=1
> [!NOTE]
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples
## 4. Running examples
### Example 1: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a ChatGLM2 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
```
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```
@ -139,103 +140,9 @@ Inference time: xxxx s
答: Artificial Intelligence (AI) refers to the ability of a computer or machine to perform tasks that typically require human-like intelligence, such as understanding language, recognizing patterns
```
## Example 2: Stream Chat using `stream_chat()` API
### Example 2: Stream Chat using `stream_chat()` API
In the example [streamchat.py](./streamchat.py), we show a basic use case for a ChatGLM2 model to stream chat, with IPEX-LLM INT4 optimizations.
### 1. Install
#### 1.1 Installation on Linux
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
```
#### 1.2 Installation on Windows
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11 libuv
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
```
### 2. Configures OneAPI environment variables for Linux
> [!NOTE]
> Skip this step if you are running on Windows.
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
```bash
source /opt/intel/oneapi/setvars.sh
```
### 3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 3.1 Configurations for Linux
<details>
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
```
</details>
<details>
<summary>For Intel Data Center GPU Max Series</summary>
```bash
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1
```
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
</details>
<details>
<summary>For Intel iGPU</summary>
```bash
export SYCL_CACHE_PERSISTENT=1
export BIGDL_LLM_XMX_DISABLED=1
```
</details>
#### 3.2 Configurations for Windows
<details>
<summary>For Intel iGPU</summary>
```cmd
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
```
</details>
<details>
<summary>For Intel Arc™ A-Series Graphics</summary>
```cmd
set SYCL_CACHE_PERSISTENT=1
```
</details>
> [!NOTE]
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples
**Stream Chat using `stream_chat()` API**:
```
python ./streamchat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --question QUESTION

View file

@ -5,10 +5,8 @@ In this directory, you will find examples on how you could apply IPEX-LLM INT4 o
## 0. Requirements
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
## Example 1: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a ChatGLM3 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
### 1. Install
#### 1.1 Installation on Linux
## 1. Install
### 1.1 Installation on Linux
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11
@ -17,7 +15,7 @@ conda activate llm
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
```
#### 1.2 Installation on Windows
### 1.2 Installation on Windows
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11 libuv
@ -27,7 +25,7 @@ conda activate llm
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
```
### 2. Configures OneAPI environment variables for Linux
## 2. Configures OneAPI environment variables for Linux
> [!NOTE]
> Skip this step if you are running on Windows.
@ -38,9 +36,9 @@ This is a required step on Linux for APT or offline installed oneAPI. Skip this
source /opt/intel/oneapi/setvars.sh
```
### 3. Runtime Configurations
## 3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 3.1 Configurations for Linux
### 3.1 Configurations for Linux
<details>
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
@ -77,7 +75,7 @@ export BIGDL_LLM_XMX_DISABLED=1
</details>
#### 3.2 Configurations for Windows
### 3.2 Configurations for Windows
<details>
<summary>For Intel iGPU</summary>
@ -101,7 +99,10 @@ set SYCL_CACHE_PERSISTENT=1
> [!NOTE]
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples
## 4. Running examples
### Example 1: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a ChatGLM3 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
```
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
@ -139,103 +140,8 @@ What is AI?
AI stands for Artificial Intelligence. It refers to the development of computer systems or machines that can perform tasks that would normally require human intelligence, such as recognizing patterns
```
## Example 2: Stream Chat using `stream_chat()` API
### Example 2: Stream Chat using `stream_chat()` API
In the example [streamchat.py](./streamchat.py), we show a basic use case for a ChatGLM3 model to stream chat, with IPEX-LLM INT4 optimizations.
### 1. Install
#### 1.1 Installation on Linux
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
```
#### 1.2 Installation on Windows
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11 libuv
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
```
### 2. Configures OneAPI environment variables for Linux
> [!NOTE]
> Skip this step if you are running on Windows.
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
```bash
source /opt/intel/oneapi/setvars.sh
```
### 3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 3.1 Configurations for Linux
<details>
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
```
</details>
<details>
<summary>For Intel Data Center GPU Max Series</summary>
```bash
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1
```
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
</details>
<details>
<summary>For Intel iGPU</summary>
```bash
export SYCL_CACHE_PERSISTENT=1
export BIGDL_LLM_XMX_DISABLED=1
```
</details>
#### 3.2 Configurations for Windows
<details>
<summary>For Intel iGPU</summary>
```cmd
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
```
</details>
<details>
<summary>For Intel Arc™ A-Series Graphics</summary>
```cmd
set SYCL_CACHE_PERSISTENT=1
```
</details>
> [!NOTE]
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples
**Stream Chat using `stream_chat()` API**:
```

View file

@ -4,10 +4,8 @@ In this directory, you will find examples on how you could apply IPEX-LLM INT4 o
## 0. Requirements
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
## Example 1: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a GLM-4 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
### 1. Install
#### 1.1 Installation on Linux
## 1. Install
### 1.1 Installation on Linux
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11
@ -16,10 +14,10 @@ conda activate llm
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
# install tiktoken required for GLM-4
pip install tiktoken
pip install "tiktoken>=0.7.0"
```
#### 1.2 Installation on Windows
### 1.2 Installation on Windows
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11 libuv
@ -29,10 +27,10 @@ conda activate llm
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
# install tiktoken required for GLM-4
pip install tiktoken
pip install "tiktoken>=0.7.0"
```
### 2. Configures OneAPI environment variables for Linux
## 2. Configures OneAPI environment variables for Linux
> [!NOTE]
> Skip this step if you are running on Windows.
@ -43,9 +41,9 @@ This is a required step on Linux for APT or offline installed oneAPI. Skip this
source /opt/intel/oneapi/setvars.sh
```
### 3. Runtime Configurations
## 3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 3.1 Configurations for Linux
### 3.1 Configurations for Linux
<details>
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
@ -82,7 +80,7 @@ export BIGDL_LLM_XMX_DISABLED=1
</details>
#### 3.2 Configurations for Windows
### 3.2 Configurations for Windows
<details>
<summary>For Intel iGPU</summary>
@ -106,7 +104,10 @@ set SYCL_CACHE_PERSISTENT=1
> [!NOTE]
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples
## 4. Running examples
### Example 1: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a GLM-4 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
```
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
@ -118,7 +119,7 @@ Arguments info:
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
#### Sample Output
##### [THUDM/glm-4-9b-chat](https://huggingface.co/THUDM/glm-4-9b-chat)
#### [THUDM/glm-4-9b-chat](https://huggingface.co/THUDM/glm-4-9b-chat)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
@ -145,109 +146,8 @@ What is AI?
Artificial Intelligence (AI) refers to the simulation of human intelligence in machines that are programmed to think like humans and mimic their actions. The term "art
```
## Example 2: Stream Chat using `stream_chat()` API
### Example 2: Stream Chat using `stream_chat()` API
In the example [streamchat.py](./streamchat.py), we show a basic use case for a GLM-4 model to stream chat, with IPEX-LLM INT4 optimizations.
### 1. Install
#### 1.1 Installation on Linux
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
# install tiktoken required for GLM-4
pip install tiktoken
```
#### 1.2 Installation on Windows
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11 libuv
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
# install tiktoken required for GLM-4
pip install tiktoken
```
### 2. Configures OneAPI environment variables for Linux
> [!NOTE]
> Skip this step if you are running on Windows.
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
```bash
source /opt/intel/oneapi/setvars.sh
```
### 3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 3.1 Configurations for Linux
<details>
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
```
</details>
<details>
<summary>For Intel Data Center GPU Max Series</summary>
```bash
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1
```
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
</details>
<details>
<summary>For Intel iGPU</summary>
```bash
export SYCL_CACHE_PERSISTENT=1
export BIGDL_LLM_XMX_DISABLED=1
```
</details>
#### 3.2 Configurations for Windows
<details>
<summary>For Intel iGPU</summary>
```cmd
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
```
</details>
<details>
<summary>For Intel Arc™ A-Series Graphics</summary>
```cmd
set SYCL_CACHE_PERSISTENT=1
```
</details>
> [!NOTE]
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples
**Stream Chat using `stream_chat()` API**:
```

View file

@ -4,10 +4,8 @@ In this directory, you will find examples on how you could use IPEX-LLM `optimiz
## Requirements
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
## Example 1: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a ChatGLM2 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
### 1. Install
#### 1.1 Installation on Linux
## 1. Install
### 1.1 Installation on Linux
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11
@ -16,7 +14,7 @@ conda activate llm
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
```
#### 1.2 Installation on Windows
### 1.2 Installation on Windows
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11 libuv
@ -26,7 +24,7 @@ conda activate llm
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
```
### 2. Configures OneAPI environment variables for Linux
## 2. Configures OneAPI environment variables for Linux
> [!NOTE]
> Skip this step if you are running on Windows.
@ -37,9 +35,9 @@ This is a required step on Linux for APT or offline installed oneAPI. Skip this
source /opt/intel/oneapi/setvars.sh
```
### 3. Runtime Configurations
## 3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 3.1 Configurations for Linux
### 3.1 Configurations for Linux
<details>
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
@ -76,7 +74,7 @@ export BIGDL_LLM_XMX_DISABLED=1
</details>
#### 3.2 Configurations for Windows
### 3.2 Configurations for Windows
<details>
<summary>For Intel iGPU</summary>
@ -100,7 +98,11 @@ set SYCL_CACHE_PERSISTENT=1
> [!NOTE]
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples
## 4. Running examples
### Example 1: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a ChatGLM2 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
```bash
python ./generate.py --prompt 'AI是什么'
@ -112,8 +114,9 @@ In the example, several arguments can be passed to satisfy your requirements:
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
#### 4.1 Sample Output
#### Sample Output
#### [THUDM/chatglm2-6b](https://huggingface.co/THUDM/chatglm2-6b)
```log
Inference time: xxxx s
-------------------- Output --------------------
@ -132,103 +135,8 @@ Inference time: xxxx s
答: Artificial Intelligence (AI) refers to the ability of a computer or machine to perform tasks that typically require human-like intelligence, such as understanding language, recognizing patterns
```
## Example 2: Stream Chat using `stream_chat()` API
### Example 2: Stream Chat using `stream_chat()` API
In the example [streamchat.py](./streamchat.py), we show a basic use case for a ChatGLM2 model to stream chat, with IPEX-LLM INT4 optimizations.
### 1. Install
#### 1.1 Installation on Linux
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
```
#### 1.2 Installation on Windows
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11 libuv
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
```
### 2. Configures OneAPI environment variables for Linux
> [!NOTE]
> Skip this step if you are running on Windows.
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
```bash
source /opt/intel/oneapi/setvars.sh
```
### 3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 3.1 Configurations for Linux
<details>
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
```
</details>
<details>
<summary>For Intel Data Center GPU Max Series</summary>
```bash
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1
```
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
</details>
<details>
<summary>For Intel iGPU</summary>
```bash
export SYCL_CACHE_PERSISTENT=1
export BIGDL_LLM_XMX_DISABLED=1
```
</details>
#### 3.2 Configurations for Windows
<details>
<summary>For Intel iGPU</summary>
```cmd
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
```
</details>
<details>
<summary>For Intel Arc™ A-Series Graphics</summary>
```cmd
set SYCL_CACHE_PERSISTENT=1
```
</details>
> [!NOTE]
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples
**Stream Chat using `stream_chat()` API**:
```
@ -244,4 +152,4 @@ In the example, several arguments can be passed to satisfy your requirements:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the ChatGLM2 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/chatglm2-6b'`.
- `--question QUESTION`: argument defining the question to ask. It is default to be `"晚上睡不着应该怎么办"`.
- `--disable-stream`: argument defining whether to stream chat. If include `--disable-stream` when running the script, the stream chat is disabled and `chat()` API is used.
- `--disable-stream`: argument defining whether to stream chat. If include `--disable-stream` when running the script, the stream chat is disabled and `chat()` API is used.

View file

@ -4,10 +4,8 @@ In this directory, you will find examples on how you could use IPEX-LLM `optimiz
## Requirements
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
## Example 1: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a ChatGLM3 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
### 1. Install
#### 1.1 Installation on Linux
## 1. Install
### 1.1 Installation on Linux
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11
@ -16,7 +14,7 @@ conda activate llm
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
```
#### 1.2 Installation on Windows
### 1.2 Installation on Windows
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11 libuv
@ -26,7 +24,7 @@ conda activate llm
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
```
### 2. Configures OneAPI environment variables for Linux
## 2. Configures OneAPI environment variables for Linux
> [!NOTE]
> Skip this step if you are running on Windows.
@ -37,9 +35,9 @@ This is a required step on Linux for APT or offline installed oneAPI. Skip this
source /opt/intel/oneapi/setvars.sh
```
### 3. Runtime Configurations
## 3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 3.1 Configurations for Linux
### 3.1 Configurations for Linux
<details>
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
@ -76,7 +74,7 @@ export BIGDL_LLM_XMX_DISABLED=1
</details>
#### 3.2 Configurations for Windows
### 3.2 Configurations for Windows
<details>
<summary>For Intel iGPU</summary>
@ -100,7 +98,10 @@ set SYCL_CACHE_PERSISTENT=1
> [!NOTE]
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples
## 4. Running examples
### Example 1: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a ChatGLM3 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
```bash
python ./generate.py --prompt 'AI是什么'
@ -112,7 +113,7 @@ In the example, several arguments can be passed to satisfy your requirements:
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
#### 4.1 Sample Output
#### Sample Output
#### [THUDM/chatglm3-6b](https://huggingface.co/THUDM/chatglm3-6b)
```log
Inference time: xxxx s
@ -131,103 +132,9 @@ What is AI?
AI stands for Artificial Intelligence. It refers to the development of computer systems or machines that can perform tasks that would normally require human intelligence, such as recognizing patterns
```
## Example 2: Stream Chat using `stream_chat()` API
### Example 2: Stream Chat using `stream_chat()` API
In the example [streamchat.py](./streamchat.py), we show a basic use case for a ChatGLM3 model to stream chat, with IPEX-LLM INT4 optimizations.
### 1. Install
#### 1.1 Installation on Linux
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
```
#### 1.2 Installation on Windows
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11 libuv
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
```
### 2. Configures OneAPI environment variables for Linux
> [!NOTE]
> Skip this step if you are running on Windows.
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
```bash
source /opt/intel/oneapi/setvars.sh
```
### 3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 3.1 Configurations for Linux
<details>
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
```
</details>
<details>
<summary>For Intel Data Center GPU Max Series</summary>
```bash
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1
```
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
</details>
<details>
<summary>For Intel iGPU</summary>
```bash
export SYCL_CACHE_PERSISTENT=1
export BIGDL_LLM_XMX_DISABLED=1
```
</details>
#### 3.2 Configurations for Windows
<details>
<summary>For Intel iGPU</summary>
```cmd
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
```
</details>
<details>
<summary>For Intel Arc™ A-Series Graphics</summary>
```cmd
set SYCL_CACHE_PERSISTENT=1
```
</details>
> [!NOTE]
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples
**Stream Chat using `stream_chat()` API**:
```
python ./streamchat.py

View file

@ -16,7 +16,7 @@ conda activate llm
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
# install tiktoken required for GLM-4
pip install tiktoken
pip install "tiktoken>=0.7.0"
```
#### 1.2 Installation on Windows
@ -29,7 +29,7 @@ conda activate llm
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
# install tiktoken required for GLM-4
pip install tiktoken
pip install "tiktoken>=0.7.0"
```
### 2. Configures OneAPI environment variables for Linux