update llama.cpp related quickstart with rebased llama.cpp (#12996)
* update doc with reabsed llama.cpp * revert table of contents * update demo output log
This commit is contained in:
parent
7a86dd0569
commit
0e0786a63c
4 changed files with 312 additions and 264 deletions
|
|
@ -12,9 +12,9 @@
|
|||
> For installation on Intel Arc B-Series GPU (such as **B580**), please refer to this [guide](./bmg_quickstart.md).
|
||||
|
||||
> [!NOTE]
|
||||
> Our latest version is consistent with [3f1ae2e](https://github.com/ggerganov/llama.cpp/commit/3f1ae2e32cde00c39b96be6d01c2997c29bae555) of llama.cpp.
|
||||
> Our latest version is consistent with [d7cfe1f](https://github.com/ggml-org/llama.cpp/commit/d7cfe1ffe0f435d0048a6058d529daf76e072d9c) of llama.cpp.
|
||||
>
|
||||
> `ipex-llm[cpp]==2.2.0b20241204` is consistent with [a1631e5](https://github.com/ggerganov/llama.cpp/commit/a1631e53f6763e17da522ba219b030d8932900bd) of llama.cpp.
|
||||
> `ipex-llm[cpp]==2.2.0b20250320` is consistent with [ba1cb19](https://github.com/ggml-org/llama.cpp/commit/ba1cb19cdd0d92e012e0f6e009e0620f854b6afd) of llama.cpp.
|
||||
|
||||
See the demo of running LLaMA2-7B on Intel Arc GPU below.
|
||||
|
||||
|
|
@ -158,7 +158,7 @@ Before running, you should download or copy community GGUF model to your current
|
|||
- For **Linux users**:
|
||||
|
||||
```bash
|
||||
./llama-cli -m mistral-7b-instruct-v0.1.Q4_K_M.gguf -n 32 --prompt "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun" -c 1024 -t 8 -e -ngl 99 --color
|
||||
./llama-cli -m mistral-7b-instruct-v0.1.Q4_K_M.gguf -n 32 --prompt "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun" -c 1024 -t 8 -e -ngl 99 --color -no-cnv
|
||||
```
|
||||
|
||||
> **Note**:
|
||||
|
|
@ -170,7 +170,7 @@ Before running, you should download or copy community GGUF model to your current
|
|||
Please run the following command in Miniforge Prompt.
|
||||
|
||||
```cmd
|
||||
llama-cli -m mistral-7b-instruct-v0.1.Q4_K_M.gguf -n 32 --prompt "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun" -c 1024 -t 8 -e -ngl 99 --color
|
||||
llama-cli -m mistral-7b-instruct-v0.1.Q4_K_M.gguf -n 32 --prompt "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun" -c 1024 -t 8 -e -ngl 99 --color -no-cnv
|
||||
```
|
||||
|
||||
> **Note**:
|
||||
|
|
@ -179,11 +179,10 @@ Before running, you should download or copy community GGUF model to your current
|
|||
|
||||
#### Sample Output
|
||||
```
|
||||
Log start
|
||||
main: build = 1 (6f4ec98)
|
||||
main: built with MSVC 19.39.33519.0 for
|
||||
main: seed = 1724921424
|
||||
llama_model_loader: loaded meta data with 20 key-value pairs and 291 tensors from D:\gguf-models\mistral-7b-instruct-v0.1.Q4_K_M.gguf (version GGUF V2)
|
||||
main: llama backend init
|
||||
main: load the model and apply lora adapter, if any
|
||||
llama_model_load_from_file_impl: using device SYCL0 (Intel(R) Arc(TM) A770 Graphics) - 15473 MiB free
|
||||
llama_model_loader: loaded meta data with 20 key-value pairs and 291 tensors from /home/arda/ruonan/mistral-7b-instruct-v0.1.Q4_K_M.gguf (version GGUF V2)
|
||||
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
|
||||
llama_model_loader: - kv 0: general.architecture str = llama
|
||||
llama_model_loader: - kv 1: general.name str = mistralai_mistral-7b-instruct-v0.1
|
||||
|
|
@ -208,108 +207,123 @@ llama_model_loader: - kv 19: general.quantization_version u32
|
|||
llama_model_loader: - type f32: 65 tensors
|
||||
llama_model_loader: - type q4_K: 193 tensors
|
||||
llama_model_loader: - type q6_K: 33 tensors
|
||||
llm_load_vocab: special tokens cache size = 3
|
||||
llm_load_vocab: token to piece cache size = 0.1637 MB
|
||||
llm_load_print_meta: format = GGUF V2
|
||||
llm_load_print_meta: arch = llama
|
||||
llm_load_print_meta: vocab type = SPM
|
||||
llm_load_print_meta: n_vocab = 32000
|
||||
llm_load_print_meta: n_merges = 0
|
||||
llm_load_print_meta: vocab_only = 0
|
||||
llm_load_print_meta: n_ctx_train = 32768
|
||||
llm_load_print_meta: n_embd = 4096
|
||||
llm_load_print_meta: n_layer = 32
|
||||
llm_load_print_meta: n_head = 32
|
||||
llm_load_print_meta: n_head_kv = 8
|
||||
llm_load_print_meta: n_rot = 128
|
||||
llm_load_print_meta: n_swa = 0
|
||||
llm_load_print_meta: n_embd_head_k = 128
|
||||
llm_load_print_meta: n_embd_head_v = 128
|
||||
llm_load_print_meta: n_gqa = 4
|
||||
llm_load_print_meta: n_embd_k_gqa = 1024
|
||||
llm_load_print_meta: n_embd_v_gqa = 1024
|
||||
llm_load_print_meta: f_norm_eps = 0.0e+00
|
||||
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
|
||||
llm_load_print_meta: f_clamp_kqv = 0.0e+00
|
||||
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
|
||||
llm_load_print_meta: f_logit_scale = 0.0e+00
|
||||
llm_load_print_meta: n_ff = 14336
|
||||
llm_load_print_meta: n_expert = 0
|
||||
llm_load_print_meta: n_expert_used = 0
|
||||
llm_load_print_meta: causal attn = 1
|
||||
llm_load_print_meta: pooling type = 0
|
||||
llm_load_print_meta: rope type = 0
|
||||
llm_load_print_meta: rope scaling = linear
|
||||
llm_load_print_meta: freq_base_train = 10000.0
|
||||
llm_load_print_meta: freq_scale_train = 1
|
||||
llm_load_print_meta: n_ctx_orig_yarn = 32768
|
||||
llm_load_print_meta: rope_finetuned = unknown
|
||||
llm_load_print_meta: ssm_d_conv = 0
|
||||
llm_load_print_meta: ssm_d_inner = 0
|
||||
llm_load_print_meta: ssm_d_state = 0
|
||||
llm_load_print_meta: ssm_dt_rank = 0
|
||||
llm_load_print_meta: ssm_dt_b_c_rms = 0
|
||||
llm_load_print_meta: model type = 7B
|
||||
llm_load_print_meta: model ftype = Q4_K - Medium
|
||||
llm_load_print_meta: model params = 7.24 B
|
||||
llm_load_print_meta: model size = 4.07 GiB (4.83 BPW)
|
||||
llm_load_print_meta: general.name = mistralai_mistral-7b-instruct-v0.1
|
||||
llm_load_print_meta: BOS token = 1 '<s>'
|
||||
llm_load_print_meta: EOS token = 2 '</s>'
|
||||
llm_load_print_meta: UNK token = 0 '<unk>'
|
||||
llm_load_print_meta: LF token = 13 '<0x0A>'
|
||||
llm_load_print_meta: max token length = 48
|
||||
ggml_sycl_init: GGML_SYCL_FORCE_MMQ: no
|
||||
ggml_sycl_init: SYCL_USE_XMX: yes
|
||||
ggml_sycl_init: found 1 SYCL devices:
|
||||
llm_load_tensors: ggml ctx size = 0.27 MiB
|
||||
llm_load_tensors: offloading 32 repeating layers to GPU
|
||||
llm_load_tensors: offloading non-repeating layers to GPU
|
||||
llm_load_tensors: offloaded 33/33 layers to GPU
|
||||
llm_load_tensors: SYCL0 buffer size = 4095.05 MiB
|
||||
llm_load_tensors: CPU buffer size = 70.31 MiB
|
||||
..............................................................................................
|
||||
llama_new_context_with_model: n_ctx = 512
|
||||
llama_new_context_with_model: n_batch = 512
|
||||
llama_new_context_with_model: n_ubatch = 512
|
||||
llama_new_context_with_model: flash_attn = 0
|
||||
llama_new_context_with_model: freq_base = 10000.0
|
||||
llama_new_context_with_model: freq_scale = 1
|
||||
[SYCL] call ggml_check_sycl
|
||||
ggml_check_sycl: GGML_SYCL_DEBUG: 0
|
||||
ggml_check_sycl: GGML_SYCL_F16: no
|
||||
found 1 SYCL devices:
|
||||
print_info: file format = GGUF V2
|
||||
print_info: file type = Q4_K - Medium
|
||||
print_info: file size = 4.07 GiB (4.83 BPW)
|
||||
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
|
||||
load: special tokens cache size = 3
|
||||
load: token to piece cache size = 0.1637 MB
|
||||
print_info: arch = llama
|
||||
print_info: vocab_only = 0
|
||||
print_info: n_ctx_train = 32768
|
||||
print_info: n_embd = 4096
|
||||
print_info: n_layer = 32
|
||||
print_info: n_head = 32
|
||||
print_info: n_head_kv = 8
|
||||
print_info: n_rot = 128
|
||||
print_info: n_swa = 0
|
||||
print_info: n_embd_head_k = 128
|
||||
print_info: n_embd_head_v = 128
|
||||
print_info: n_gqa = 4
|
||||
print_info: n_embd_k_gqa = 1024
|
||||
print_info: n_embd_v_gqa = 1024
|
||||
print_info: f_norm_eps = 0.0e+00
|
||||
print_info: f_norm_rms_eps = 1.0e-05
|
||||
print_info: f_clamp_kqv = 0.0e+00
|
||||
print_info: f_max_alibi_bias = 0.0e+00
|
||||
print_info: f_logit_scale = 0.0e+00
|
||||
print_info: n_ff = 14336
|
||||
print_info: n_expert = 0
|
||||
print_info: n_expert_used = 0
|
||||
print_info: causal attn = 1
|
||||
print_info: pooling type = 0
|
||||
print_info: rope type = 0
|
||||
print_info: rope scaling = linear
|
||||
print_info: freq_base_train = 10000.0
|
||||
print_info: freq_scale_train = 1
|
||||
print_info: n_ctx_orig_yarn = 32768
|
||||
print_info: rope_finetuned = unknown
|
||||
print_info: ssm_d_conv = 0
|
||||
print_info: ssm_d_inner = 0
|
||||
print_info: ssm_d_state = 0
|
||||
print_info: ssm_dt_rank = 0
|
||||
print_info: ssm_dt_b_c_rms = 0
|
||||
print_info: model type = 7B
|
||||
print_info: model params = 7.24 B
|
||||
print_info: general.name = mistralai_mistral-7b-instruct-v0.1
|
||||
print_info: vocab type = SPM
|
||||
print_info: n_vocab = 32000
|
||||
print_info: n_merges = 0
|
||||
print_info: BOS token = 1 '<s>'
|
||||
print_info: EOS token = 2 '</s>'
|
||||
print_info: UNK token = 0 '<unk>'
|
||||
print_info: LF token = 13 '<0x0A>'
|
||||
print_info: EOG token = 2 '</s>'
|
||||
print_info: max token length = 48
|
||||
load_tensors: loading model tensors, this can take a while... (mmap = true)
|
||||
load_tensors: offloading 32 repeating layers to GPU
|
||||
load_tensors: offloading output layer to GPU
|
||||
load_tensors: offloaded 33/33 layers to GPU
|
||||
load_tensors: CPU_Mapped model buffer size = 70.31 MiB
|
||||
load_tensors: SYCL0 model buffer size = 4095.05 MiB
|
||||
.................................................................................................
|
||||
llama_init_from_model: n_seq_max = 1
|
||||
llama_init_from_model: n_ctx = 1024
|
||||
llama_init_from_model: n_ctx_per_seq = 1024
|
||||
llama_init_from_model: n_batch = 1024
|
||||
llama_init_from_model: n_ubatch = 1024
|
||||
llama_init_from_model: flash_attn = 0
|
||||
llama_init_from_model: freq_base = 10000.0
|
||||
llama_init_from_model: freq_scale = 1
|
||||
llama_init_from_model: n_ctx_per_seq (1024) < n_ctx_train (32768) -- the full capacity of the model will not be utilized
|
||||
Running with Environment Variables:
|
||||
GGML_SYCL_DEBUG: 0
|
||||
GGML_SYCL_DISABLE_OPT: 1
|
||||
Build with Macros:
|
||||
GGML_SYCL_FORCE_MMQ: no
|
||||
GGML_SYCL_F16: no
|
||||
Found 1 SYCL devices:
|
||||
| | | | |Max | |Max |Global | |
|
||||
| | | | |compute|Max work|sub |mem | |
|
||||
|ID| Device Type| Name|Version|units |group |group|size | Driver version|
|
||||
|--|-------------------|---------------------------------------|-------|-------|--------|-----|-------|---------------------|
|
||||
| 0| [level_zero:gpu:0]| Intel Arc Graphics| 1.3| 112| 1024| 32| 13578M| 1.3.27504|
|
||||
llama_kv_cache_init: SYCL0 KV buffer size = 64.00 MiB
|
||||
llama_new_context_with_model: KV self size = 64.00 MiB, K (f16): 32.00 MiB, V (f16): 32.00 MiB
|
||||
llama_new_context_with_model: SYCL_Host output buffer size = 0.12 MiB
|
||||
llama_new_context_with_model: SYCL0 compute buffer size = 81.00 MiB
|
||||
llama_new_context_with_model: SYCL_Host compute buffer size = 9.01 MiB
|
||||
llama_new_context_with_model: graph nodes = 902
|
||||
llama_new_context_with_model: graph splits = 2
|
||||
| 0| [level_zero:gpu:0]| Intel Arc A770 Graphics| 12.55| 512| 1024| 32| 16225M| 1.6.31294.120000|
|
||||
SYCL Optimization Feature:
|
||||
|ID| Device Type|Reorder|
|
||||
|--|-------------------|-------|
|
||||
| 0| [level_zero:gpu:0]| Y|
|
||||
llama_kv_cache_init: kv_size = 1024, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 32, can_shift = 1
|
||||
llama_kv_cache_init: SYCL0 KV buffer size = 128.00 MiB
|
||||
llama_init_from_model: KV self size = 128.00 MiB, K (f16): 64.00 MiB, V (f16): 64.00 MiB
|
||||
llama_init_from_model: SYCL_Host output buffer size = 0.12 MiB
|
||||
llama_init_from_model: SYCL0 compute buffer size = 164.01 MiB
|
||||
llama_init_from_model: SYCL_Host compute buffer size = 20.01 MiB
|
||||
llama_init_from_model: graph nodes = 902
|
||||
llama_init_from_model: graph splits = 2
|
||||
common_init_from_params: setting dry_penalty_last_n to ctx_size = 1024
|
||||
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
|
||||
main: llama threadpool init, n_threads = 8
|
||||
|
||||
system_info: n_threads = 8 / 18 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 |
|
||||
sampling:
|
||||
system_info: n_threads = 8 (n_threads_batch = 8) / 32 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 |
|
||||
|
||||
sampler seed: 403565315
|
||||
sampler params:
|
||||
repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
|
||||
top_k = 40, tfs_z = 1.000, top_p = 0.950, min_p = 0.050, typical_p = 1.000, temp = 0.800
|
||||
dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = 1024
|
||||
top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, top_n_sigma = -1.000, temp = 0.800
|
||||
mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
|
||||
sampling order:
|
||||
CFG -> Penalties -> top_k -> tfs_z -> typical_p -> top_p -> min_p -> temperature
|
||||
generate: n_ctx = 512, n_batch = 2048, n_predict = 32, n_keep = 1
|
||||
sampler chain: logits -> logit-bias -> penalties -> dry -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist
|
||||
generate: n_ctx = 1024, n_batch = 4096, n_predict = 32, n_keep = 1
|
||||
|
||||
Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun exploring the world. But sometimes, she found it hard to find friends who shared her interests.
|
||||
|
||||
Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun exploring the world. She lived in a small village where there weren't many opportunities for adventures, but that didn't stop her. She would often read
|
||||
llama_print_timings: load time = xxxx ms
|
||||
llama_print_timings: sample time = x.xx ms / 32 runs ( xx.xx ms per token, xx.xx tokens per second)
|
||||
llama_print_timings: prompt eval time = xx.xx ms / 31 tokens ( xx.xx ms per token, xx.xx tokens per second)
|
||||
llama_print_timings: eval time = xx.xx ms / 31 runs ( xx.xx ms per token, xx.xx tokens per second)
|
||||
llama_print_timings: total time = xx.xx ms / 62 tokens
|
||||
Log end
|
||||
One day, she decided to take matters into her own
|
||||
|
||||
llama_perf_sampler_print: sampling time = x.xx ms / 63 runs ( x.xx ms per token, xx.xx tokens per second)
|
||||
llama_perf_context_print: load time = xx.xx ms
|
||||
llama_perf_context_print: prompt eval time = xx.xx ms / 31 tokens ( xx.xx ms per token, xx.xx tokens per second)
|
||||
llama_perf_context_print: eval time = xx.xx ms / 31 runs ( xx.xx ms per token, xx.xx tokens per second)
|
||||
llama_perf_context_print: total time = xx.xx ms / 62 tokens
|
||||
```
|
||||
|
||||
### Troubleshooting
|
||||
|
|
|
|||
|
|
@ -12,9 +12,9 @@
|
|||
> 如果是在 Intel Arc B 系列 GPU 上安装(例,**B580**),请参阅本[指南](./bmg_quickstart.md)。
|
||||
|
||||
> [!NOTE]
|
||||
> `ipex-llm[cpp]` 的最新版本与官方 llama.cpp 的 [3f1ae2e](https://github.com/ggerganov/llama.cpp/commit/3f1ae2e32cde00c39b96be6d01c2997c29bae555) 版本保持一致。
|
||||
> `ipex-llm[cpp]` 的最新版本与官方 llama.cpp 的 [d7cfe1f](https://github.com/ggml-org/llama.cpp/commit/d7cfe1ffe0f435d0048a6058d529daf76e072d9c) 版本保持一致。
|
||||
>
|
||||
> `ipex-llm[cpp]==2.2.0b20241204` 与官方 llama.cpp 的 [a1631e5](https://github.com/ggerganov/llama.cpp/commit/a1631e53f6763e17da522ba219b030d8932900bd) 版本保持一致。
|
||||
> `ipex-llm[cpp]==2.2.0b20250320` 与官方 llama.cpp 的 [ba1cb19](https://github.com/ggml-org/llama.cpp/commit/ba1cb19cdd0d92e012e0f6e009e0620f854b6afd) 版本保持一致。
|
||||
|
||||
以下是在 Intel Arc GPU 上运行 LLaMA2-7B 的 DEMO 演示。
|
||||
|
||||
|
|
@ -159,7 +159,7 @@ cd llama-cpp
|
|||
- **Linux 用户**:
|
||||
|
||||
```bash
|
||||
./llama-cli -m mistral-7b-instruct-v0.1.Q4_K_M.gguf -n 32 --prompt "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun" -c 1024 -t 8 -e -ngl 99 --color
|
||||
./llama-cli -m mistral-7b-instruct-v0.1.Q4_K_M.gguf -n 32 --prompt "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun" -c 1024 -t 8 -e -ngl 99 --color -no-cnv
|
||||
```
|
||||
|
||||
> **Note**:
|
||||
|
|
@ -171,7 +171,7 @@ cd llama-cpp
|
|||
请在 Miniforge Prompt 中运行以下命令。
|
||||
|
||||
```cmd
|
||||
llama-cli -m mistral-7b-instruct-v0.1.Q4_K_M.gguf -n 32 --prompt "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun" -c 1024 -t 8 -e -ngl 99 --color
|
||||
llama-cli -m mistral-7b-instruct-v0.1.Q4_K_M.gguf -n 32 --prompt "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun" -c 1024 -t 8 -e -ngl 99 --color -no-cnv
|
||||
```
|
||||
|
||||
> **Note**:
|
||||
|
|
@ -180,11 +180,10 @@ cd llama-cpp
|
|||
|
||||
#### 示例输出
|
||||
```
|
||||
Log start
|
||||
main: build = 1 (6f4ec98)
|
||||
main: built with MSVC 19.39.33519.0 for
|
||||
main: seed = 1724921424
|
||||
llama_model_loader: loaded meta data with 20 key-value pairs and 291 tensors from D:\gguf-models\mistral-7b-instruct-v0.1.Q4_K_M.gguf (version GGUF V2)
|
||||
main: llama backend init
|
||||
main: load the model and apply lora adapter, if any
|
||||
llama_model_load_from_file_impl: using device SYCL0 (Intel(R) Arc(TM) A770 Graphics) - 15473 MiB free
|
||||
llama_model_loader: loaded meta data with 20 key-value pairs and 291 tensors from /home/arda/ruonan/mistral-7b-instruct-v0.1.Q4_K_M.gguf (version GGUF V2)
|
||||
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
|
||||
llama_model_loader: - kv 0: general.architecture str = llama
|
||||
llama_model_loader: - kv 1: general.name str = mistralai_mistral-7b-instruct-v0.1
|
||||
|
|
@ -209,108 +208,123 @@ llama_model_loader: - kv 19: general.quantization_version u32
|
|||
llama_model_loader: - type f32: 65 tensors
|
||||
llama_model_loader: - type q4_K: 193 tensors
|
||||
llama_model_loader: - type q6_K: 33 tensors
|
||||
llm_load_vocab: special tokens cache size = 3
|
||||
llm_load_vocab: token to piece cache size = 0.1637 MB
|
||||
llm_load_print_meta: format = GGUF V2
|
||||
llm_load_print_meta: arch = llama
|
||||
llm_load_print_meta: vocab type = SPM
|
||||
llm_load_print_meta: n_vocab = 32000
|
||||
llm_load_print_meta: n_merges = 0
|
||||
llm_load_print_meta: vocab_only = 0
|
||||
llm_load_print_meta: n_ctx_train = 32768
|
||||
llm_load_print_meta: n_embd = 4096
|
||||
llm_load_print_meta: n_layer = 32
|
||||
llm_load_print_meta: n_head = 32
|
||||
llm_load_print_meta: n_head_kv = 8
|
||||
llm_load_print_meta: n_rot = 128
|
||||
llm_load_print_meta: n_swa = 0
|
||||
llm_load_print_meta: n_embd_head_k = 128
|
||||
llm_load_print_meta: n_embd_head_v = 128
|
||||
llm_load_print_meta: n_gqa = 4
|
||||
llm_load_print_meta: n_embd_k_gqa = 1024
|
||||
llm_load_print_meta: n_embd_v_gqa = 1024
|
||||
llm_load_print_meta: f_norm_eps = 0.0e+00
|
||||
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
|
||||
llm_load_print_meta: f_clamp_kqv = 0.0e+00
|
||||
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
|
||||
llm_load_print_meta: f_logit_scale = 0.0e+00
|
||||
llm_load_print_meta: n_ff = 14336
|
||||
llm_load_print_meta: n_expert = 0
|
||||
llm_load_print_meta: n_expert_used = 0
|
||||
llm_load_print_meta: causal attn = 1
|
||||
llm_load_print_meta: pooling type = 0
|
||||
llm_load_print_meta: rope type = 0
|
||||
llm_load_print_meta: rope scaling = linear
|
||||
llm_load_print_meta: freq_base_train = 10000.0
|
||||
llm_load_print_meta: freq_scale_train = 1
|
||||
llm_load_print_meta: n_ctx_orig_yarn = 32768
|
||||
llm_load_print_meta: rope_finetuned = unknown
|
||||
llm_load_print_meta: ssm_d_conv = 0
|
||||
llm_load_print_meta: ssm_d_inner = 0
|
||||
llm_load_print_meta: ssm_d_state = 0
|
||||
llm_load_print_meta: ssm_dt_rank = 0
|
||||
llm_load_print_meta: ssm_dt_b_c_rms = 0
|
||||
llm_load_print_meta: model type = 7B
|
||||
llm_load_print_meta: model ftype = Q4_K - Medium
|
||||
llm_load_print_meta: model params = 7.24 B
|
||||
llm_load_print_meta: model size = 4.07 GiB (4.83 BPW)
|
||||
llm_load_print_meta: general.name = mistralai_mistral-7b-instruct-v0.1
|
||||
llm_load_print_meta: BOS token = 1 '<s>'
|
||||
llm_load_print_meta: EOS token = 2 '</s>'
|
||||
llm_load_print_meta: UNK token = 0 '<unk>'
|
||||
llm_load_print_meta: LF token = 13 '<0x0A>'
|
||||
llm_load_print_meta: max token length = 48
|
||||
ggml_sycl_init: GGML_SYCL_FORCE_MMQ: no
|
||||
ggml_sycl_init: SYCL_USE_XMX: yes
|
||||
ggml_sycl_init: found 1 SYCL devices:
|
||||
llm_load_tensors: ggml ctx size = 0.27 MiB
|
||||
llm_load_tensors: offloading 32 repeating layers to GPU
|
||||
llm_load_tensors: offloading non-repeating layers to GPU
|
||||
llm_load_tensors: offloaded 33/33 layers to GPU
|
||||
llm_load_tensors: SYCL0 buffer size = 4095.05 MiB
|
||||
llm_load_tensors: CPU buffer size = 70.31 MiB
|
||||
..............................................................................................
|
||||
llama_new_context_with_model: n_ctx = 512
|
||||
llama_new_context_with_model: n_batch = 512
|
||||
llama_new_context_with_model: n_ubatch = 512
|
||||
llama_new_context_with_model: flash_attn = 0
|
||||
llama_new_context_with_model: freq_base = 10000.0
|
||||
llama_new_context_with_model: freq_scale = 1
|
||||
[SYCL] call ggml_check_sycl
|
||||
ggml_check_sycl: GGML_SYCL_DEBUG: 0
|
||||
ggml_check_sycl: GGML_SYCL_F16: no
|
||||
found 1 SYCL devices:
|
||||
print_info: file format = GGUF V2
|
||||
print_info: file type = Q4_K - Medium
|
||||
print_info: file size = 4.07 GiB (4.83 BPW)
|
||||
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
|
||||
load: special tokens cache size = 3
|
||||
load: token to piece cache size = 0.1637 MB
|
||||
print_info: arch = llama
|
||||
print_info: vocab_only = 0
|
||||
print_info: n_ctx_train = 32768
|
||||
print_info: n_embd = 4096
|
||||
print_info: n_layer = 32
|
||||
print_info: n_head = 32
|
||||
print_info: n_head_kv = 8
|
||||
print_info: n_rot = 128
|
||||
print_info: n_swa = 0
|
||||
print_info: n_embd_head_k = 128
|
||||
print_info: n_embd_head_v = 128
|
||||
print_info: n_gqa = 4
|
||||
print_info: n_embd_k_gqa = 1024
|
||||
print_info: n_embd_v_gqa = 1024
|
||||
print_info: f_norm_eps = 0.0e+00
|
||||
print_info: f_norm_rms_eps = 1.0e-05
|
||||
print_info: f_clamp_kqv = 0.0e+00
|
||||
print_info: f_max_alibi_bias = 0.0e+00
|
||||
print_info: f_logit_scale = 0.0e+00
|
||||
print_info: n_ff = 14336
|
||||
print_info: n_expert = 0
|
||||
print_info: n_expert_used = 0
|
||||
print_info: causal attn = 1
|
||||
print_info: pooling type = 0
|
||||
print_info: rope type = 0
|
||||
print_info: rope scaling = linear
|
||||
print_info: freq_base_train = 10000.0
|
||||
print_info: freq_scale_train = 1
|
||||
print_info: n_ctx_orig_yarn = 32768
|
||||
print_info: rope_finetuned = unknown
|
||||
print_info: ssm_d_conv = 0
|
||||
print_info: ssm_d_inner = 0
|
||||
print_info: ssm_d_state = 0
|
||||
print_info: ssm_dt_rank = 0
|
||||
print_info: ssm_dt_b_c_rms = 0
|
||||
print_info: model type = 7B
|
||||
print_info: model params = 7.24 B
|
||||
print_info: general.name = mistralai_mistral-7b-instruct-v0.1
|
||||
print_info: vocab type = SPM
|
||||
print_info: n_vocab = 32000
|
||||
print_info: n_merges = 0
|
||||
print_info: BOS token = 1 '<s>'
|
||||
print_info: EOS token = 2 '</s>'
|
||||
print_info: UNK token = 0 '<unk>'
|
||||
print_info: LF token = 13 '<0x0A>'
|
||||
print_info: EOG token = 2 '</s>'
|
||||
print_info: max token length = 48
|
||||
load_tensors: loading model tensors, this can take a while... (mmap = true)
|
||||
load_tensors: offloading 32 repeating layers to GPU
|
||||
load_tensors: offloading output layer to GPU
|
||||
load_tensors: offloaded 33/33 layers to GPU
|
||||
load_tensors: CPU_Mapped model buffer size = 70.31 MiB
|
||||
load_tensors: SYCL0 model buffer size = 4095.05 MiB
|
||||
.................................................................................................
|
||||
llama_init_from_model: n_seq_max = 1
|
||||
llama_init_from_model: n_ctx = 1024
|
||||
llama_init_from_model: n_ctx_per_seq = 1024
|
||||
llama_init_from_model: n_batch = 1024
|
||||
llama_init_from_model: n_ubatch = 1024
|
||||
llama_init_from_model: flash_attn = 0
|
||||
llama_init_from_model: freq_base = 10000.0
|
||||
llama_init_from_model: freq_scale = 1
|
||||
llama_init_from_model: n_ctx_per_seq (1024) < n_ctx_train (32768) -- the full capacity of the model will not be utilized
|
||||
Running with Environment Variables:
|
||||
GGML_SYCL_DEBUG: 0
|
||||
GGML_SYCL_DISABLE_OPT: 1
|
||||
Build with Macros:
|
||||
GGML_SYCL_FORCE_MMQ: no
|
||||
GGML_SYCL_F16: no
|
||||
Found 1 SYCL devices:
|
||||
| | | | |Max | |Max |Global | |
|
||||
| | | | |compute|Max work|sub |mem | |
|
||||
|ID| Device Type| Name|Version|units |group |group|size | Driver version|
|
||||
|--|-------------------|---------------------------------------|-------|-------|--------|-----|-------|---------------------|
|
||||
| 0| [level_zero:gpu:0]| Intel Arc Graphics| 1.3| 112| 1024| 32| 13578M| 1.3.27504|
|
||||
llama_kv_cache_init: SYCL0 KV buffer size = 64.00 MiB
|
||||
llama_new_context_with_model: KV self size = 64.00 MiB, K (f16): 32.00 MiB, V (f16): 32.00 MiB
|
||||
llama_new_context_with_model: SYCL_Host output buffer size = 0.12 MiB
|
||||
llama_new_context_with_model: SYCL0 compute buffer size = 81.00 MiB
|
||||
llama_new_context_with_model: SYCL_Host compute buffer size = 9.01 MiB
|
||||
llama_new_context_with_model: graph nodes = 902
|
||||
llama_new_context_with_model: graph splits = 2
|
||||
| 0| [level_zero:gpu:0]| Intel Arc A770 Graphics| 12.55| 512| 1024| 32| 16225M| 1.6.31294.120000|
|
||||
SYCL Optimization Feature:
|
||||
|ID| Device Type|Reorder|
|
||||
|--|-------------------|-------|
|
||||
| 0| [level_zero:gpu:0]| Y|
|
||||
llama_kv_cache_init: kv_size = 1024, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 32, can_shift = 1
|
||||
llama_kv_cache_init: SYCL0 KV buffer size = 128.00 MiB
|
||||
llama_init_from_model: KV self size = 128.00 MiB, K (f16): 64.00 MiB, V (f16): 64.00 MiB
|
||||
llama_init_from_model: SYCL_Host output buffer size = 0.12 MiB
|
||||
llama_init_from_model: SYCL0 compute buffer size = 164.01 MiB
|
||||
llama_init_from_model: SYCL_Host compute buffer size = 20.01 MiB
|
||||
llama_init_from_model: graph nodes = 902
|
||||
llama_init_from_model: graph splits = 2
|
||||
common_init_from_params: setting dry_penalty_last_n to ctx_size = 1024
|
||||
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
|
||||
main: llama threadpool init, n_threads = 8
|
||||
|
||||
system_info: n_threads = 8 / 18 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 |
|
||||
sampling:
|
||||
system_info: n_threads = 8 (n_threads_batch = 8) / 32 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 |
|
||||
|
||||
sampler seed: 403565315
|
||||
sampler params:
|
||||
repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
|
||||
top_k = 40, tfs_z = 1.000, top_p = 0.950, min_p = 0.050, typical_p = 1.000, temp = 0.800
|
||||
dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = 1024
|
||||
top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, top_n_sigma = -1.000, temp = 0.800
|
||||
mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
|
||||
sampling order:
|
||||
CFG -> Penalties -> top_k -> tfs_z -> typical_p -> top_p -> min_p -> temperature
|
||||
generate: n_ctx = 512, n_batch = 2048, n_predict = 32, n_keep = 1
|
||||
sampler chain: logits -> logit-bias -> penalties -> dry -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist
|
||||
generate: n_ctx = 1024, n_batch = 4096, n_predict = 32, n_keep = 1
|
||||
|
||||
Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun exploring the world. But sometimes, she found it hard to find friends who shared her interests.
|
||||
|
||||
Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun exploring the world. She lived in a small village where there weren't many opportunities for adventures, but that didn't stop her. She would often read
|
||||
llama_print_timings: load time = xxxx ms
|
||||
llama_print_timings: sample time = x.xx ms / 32 runs ( xx.xx ms per token, xx.xx tokens per second)
|
||||
llama_print_timings: prompt eval time = xx.xx ms / 31 tokens ( xx.xx ms per token, xx.xx tokens per second)
|
||||
llama_print_timings: eval time = xx.xx ms / 31 runs ( xx.xx ms per token, xx.xx tokens per second)
|
||||
llama_print_timings: total time = xx.xx ms / 62 tokens
|
||||
Log end
|
||||
One day, she decided to take matters into her own
|
||||
|
||||
llama_perf_sampler_print: sampling time = x.xx ms / 63 runs ( x.xx ms per token, xx.xx tokens per second)
|
||||
llama_perf_context_print: load time = xx.xx ms
|
||||
llama_perf_context_print: prompt eval time = xx.xx ms / 31 tokens ( xx.xx ms per token, xx.xx tokens per second)
|
||||
llama_perf_context_print: eval time = xx.xx ms / 31 runs ( xx.xx ms per token, xx.xx tokens per second)
|
||||
llama_perf_context_print: total time = xx.xx ms / 62 tokens
|
||||
```
|
||||
|
||||
### 故障排除
|
||||
|
|
|
|||
|
|
@ -64,7 +64,7 @@ Before running, you should download or copy community GGUF model to your local d
|
|||
#### Run GGUF model
|
||||
Please change `PATH\TO\DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf` to your model path before your run below command.
|
||||
```cmd
|
||||
llama-cli.exe -m PATH\TO\DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf -p "A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think> <answer> answer here </answer>. User: Question:The product of the ages of three teenagers is 4590. How old is the oldest? a. 18 b. 19 c. 15 d. 17 Assistant: <think>" -n 2048 -t 8 -e -ngl 99 --color -c 2500 --temp 0
|
||||
llama-cli.exe -m PATH\TO\DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf -p "A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think> <answer> answer here </answer>. User: Question:The product of the ages of three teenagers is 4590. How old is the oldest? a. 18 b. 19 c. 15 d. 17 Assistant: <think>" -n 2048 -t 8 -e -ngl 99 --color -c 2500 --temp 0 -no-cnv
|
||||
```
|
||||
|
||||
Part of outputs:
|
||||
|
|
@ -75,27 +75,32 @@ Found 1 SYCL devices:
|
|||
| | | | |compute|Max work|sub |mem | |
|
||||
|ID| Device Type| Name|Version|units |group |group|size | Driver version|
|
||||
|--|-------------------|---------------------------------------|-------|-------|--------|-----|-------|---------------------|
|
||||
| 0| [level_zero:gpu:0]| Intel Arc Graphics| 12.71| 128| 1024| 32| 13578M| 1.3.27504|
|
||||
| 0| [level_zero:gpu:0]| Intel Arc A770 Graphics| 12.55| 512| 1024| 32| 16225M| 1.6.31294.120000|
|
||||
SYCL Optimization Feature:
|
||||
|ID| Device Type|Reorder|
|
||||
|--|-------------------|-------|
|
||||
| 0| [level_zero:gpu:0]| Y|
|
||||
llama_kv_cache_init: kv_size = 2528, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 28, can_shift = 1
|
||||
llama_kv_cache_init: SYCL0 KV buffer size = 138.25 MiB
|
||||
llama_new_context_with_model: KV self size = 138.25 MiB, K (f16): 69.12 MiB, V (f16): 69.12 MiB
|
||||
llama_new_context_with_model: SYCL_Host output buffer size = 0.58 MiB
|
||||
llama_new_context_with_model: SYCL0 compute buffer size = 1501.00 MiB
|
||||
llama_new_context_with_model: SYCL_Host compute buffer size = 58.97 MiB
|
||||
llama_new_context_with_model: graph nodes = 874
|
||||
llama_new_context_with_model: graph splits = 2
|
||||
llama_init_from_model: KV self size = 138.25 MiB, K (f16): 69.12 MiB, V (f16): 69.12 MiB
|
||||
llama_init_from_model: SYCL_Host output buffer size = 0.58 MiB
|
||||
llama_init_from_model: SYCL0 compute buffer size = 1501.00 MiB
|
||||
llama_init_from_model: SYCL_Host compute buffer size = 59.28 MiB
|
||||
llama_init_from_model: graph nodes = 874
|
||||
llama_init_from_model: graph splits = 2
|
||||
common_init_from_params: setting dry_penalty_last_n to ctx_size = 2528
|
||||
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
|
||||
main: llama threadpool init, n_threads = 8
|
||||
|
||||
system_info: n_threads = 8 (n_threads_batch = 8) / 22 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 |
|
||||
system_info: n_threads = 8 (n_threads_batch = 8) / 32 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 |
|
||||
|
||||
sampler seed: 341519086
|
||||
sampler params:
|
||||
sampler seed: 1856767110
|
||||
sampler params:
|
||||
repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
|
||||
dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = -1
|
||||
top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, temp = 0.000
|
||||
dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = 2528
|
||||
top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, top_n_sigma = -1.000, temp = 0.000
|
||||
mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
|
||||
sampler chain: logits -> logit-bias -> penalties -> dry -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist
|
||||
|
||||
sampler chain: logits -> logit-bias -> penalties -> dry -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist
|
||||
generate: n_ctx = 2528, n_batch = 4096, n_predict = 2048, n_keep = 1
|
||||
|
||||
<think>
|
||||
|
|
@ -143,7 +148,7 @@ Before running, you should download or copy community GGUF model to your local d
|
|||
#### Run GGUF model
|
||||
Please change `/PATH/TO/DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf` to your model path before your run below command.
|
||||
```bash
|
||||
./llama-cli -m /PATH/TO/DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf -p "A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think> <answer> answer here </answer>. User: Question:The product of the ages of three teenagers is 4590. How old is the oldest? a. 18 b. 19 c. 15 d. 17 Assistant: <think>" -n 2048 -t 8 -e -ngl 99 --color -c 2500 --temp 0
|
||||
./llama-cli -m /PATH/TO/DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf -p "A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think> <answer> answer here </answer>. User: Question:The product of the ages of three teenagers is 4590. How old is the oldest? a. 18 b. 19 c. 15 d. 17 Assistant: <think>" -n 2048 -t 8 -e -ngl 99 --color -c 2500 --temp 0 -no-cnv
|
||||
```
|
||||
|
||||
Part of outputs:
|
||||
|
|
@ -154,27 +159,32 @@ Found 1 SYCL devices:
|
|||
| | | | |compute|Max work|sub |mem | |
|
||||
|ID| Device Type| Name|Version|units |group |group|size | Driver version|
|
||||
|--|-------------------|---------------------------------------|-------|-------|--------|-----|-------|---------------------|
|
||||
| 0| [level_zero:gpu:0]| Intel Arc Graphics| 12.71| 128| 1024| 32| 13578M| 1.3.27504|
|
||||
| 0| [level_zero:gpu:0]| Intel Arc A770 Graphics| 12.55| 512| 1024| 32| 16225M| 1.6.31294.120000|
|
||||
SYCL Optimization Feature:
|
||||
|ID| Device Type|Reorder|
|
||||
|--|-------------------|-------|
|
||||
| 0| [level_zero:gpu:0]| Y|
|
||||
llama_kv_cache_init: kv_size = 2528, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 28, can_shift = 1
|
||||
llama_kv_cache_init: SYCL0 KV buffer size = 138.25 MiB
|
||||
llama_new_context_with_model: KV self size = 138.25 MiB, K (f16): 69.12 MiB, V (f16): 69.12 MiB
|
||||
llama_new_context_with_model: SYCL_Host output buffer size = 0.58 MiB
|
||||
llama_new_context_with_model: SYCL0 compute buffer size = 1501.00 MiB
|
||||
llama_new_context_with_model: SYCL_Host compute buffer size = 58.97 MiB
|
||||
llama_new_context_with_model: graph nodes = 874
|
||||
llama_new_context_with_model: graph splits = 2
|
||||
llama_init_from_model: KV self size = 138.25 MiB, K (f16): 69.12 MiB, V (f16): 69.12 MiB
|
||||
llama_init_from_model: SYCL_Host output buffer size = 0.58 MiB
|
||||
llama_init_from_model: SYCL0 compute buffer size = 1501.00 MiB
|
||||
llama_init_from_model: SYCL_Host compute buffer size = 59.28 MiB
|
||||
llama_init_from_model: graph nodes = 874
|
||||
llama_init_from_model: graph splits = 2
|
||||
common_init_from_params: setting dry_penalty_last_n to ctx_size = 2528
|
||||
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
|
||||
main: llama threadpool init, n_threads = 8
|
||||
|
||||
system_info: n_threads = 8 (n_threads_batch = 8) / 22 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 |
|
||||
system_info: n_threads = 8 (n_threads_batch = 8) / 32 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 |
|
||||
|
||||
sampler seed: 341519086
|
||||
sampler params:
|
||||
sampler seed: 1856767110
|
||||
sampler params:
|
||||
repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
|
||||
dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = -1
|
||||
top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, temp = 0.000
|
||||
dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = 2528
|
||||
top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, top_n_sigma = -1.000, temp = 0.000
|
||||
mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
|
||||
sampler chain: logits -> logit-bias -> penalties -> dry -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist
|
||||
|
||||
sampler chain: logits -> logit-bias -> penalties -> dry -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist
|
||||
generate: n_ctx = 2528, n_batch = 4096, n_predict = 2048, n_keep = 1
|
||||
|
||||
<think>
|
||||
|
|
@ -211,7 +221,7 @@ Before running, you should download or copy community GGUF model to your local d
|
|||
Change `/PATH/TO/DeepSeek-R1-Q4_K_M-00001-of-00009.gguf` to your model path, then run `DeepSeek-R1-Q4_K_M.gguf`
|
||||
|
||||
```bash
|
||||
./flash-moe -m /PATH/TO/DeepSeek-R1-Q4_K_M-00001-of-00009.gguf --prompt "What's AI?"
|
||||
./flash-moe -m /PATH/TO/DeepSeek-R1-Q4_K_M-00001-of-00009.gguf --prompt "What's AI?" -no-cnv
|
||||
```
|
||||
|
||||
Part of outputs
|
||||
|
|
|
|||
|
|
@ -66,7 +66,7 @@
|
|||
在运行以下命令之前,请将 `PATH\TO\DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf` 更改为你的模型路径。
|
||||
|
||||
```cmd
|
||||
llama-cli.exe -m PATH\TO\DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf -p "A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think> <answer> answer here </answer>. User: Question:The product of the ages of three teenagers is 4590. How old is the oldest? a. 18 b. 19 c. 15 d. 17 Assistant: <think>" -n 2048 -t 8 -e -ngl 99 --color -c 2500 --temp 0
|
||||
llama-cli.exe -m PATH\TO\DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf -p "A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think> <answer> answer here </answer>. User: Question:The product of the ages of three teenagers is 4590. How old is the oldest? a. 18 b. 19 c. 15 d. 17 Assistant: <think>" -n 2048 -t 8 -e -ngl 99 --color -c 2500 --temp 0 -no-cnv
|
||||
```
|
||||
|
||||
部分输出:
|
||||
|
|
@ -77,27 +77,32 @@ Found 1 SYCL devices:
|
|||
| | | | |compute|Max work|sub |mem | |
|
||||
|ID| Device Type| Name|Version|units |group |group|size | Driver version|
|
||||
|--|-------------------|---------------------------------------|-------|-------|--------|-----|-------|---------------------|
|
||||
| 0| [level_zero:gpu:0]| Intel Arc Graphics| 12.71| 128| 1024| 32| 13578M| 1.3.27504|
|
||||
| 0| [level_zero:gpu:0]| Intel Arc A770 Graphics| 12.55| 512| 1024| 32| 16225M| 1.6.31294.120000|
|
||||
SYCL Optimization Feature:
|
||||
|ID| Device Type|Reorder|
|
||||
|--|-------------------|-------|
|
||||
| 0| [level_zero:gpu:0]| Y|
|
||||
llama_kv_cache_init: kv_size = 2528, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 28, can_shift = 1
|
||||
llama_kv_cache_init: SYCL0 KV buffer size = 138.25 MiB
|
||||
llama_new_context_with_model: KV self size = 138.25 MiB, K (f16): 69.12 MiB, V (f16): 69.12 MiB
|
||||
llama_new_context_with_model: SYCL_Host output buffer size = 0.58 MiB
|
||||
llama_new_context_with_model: SYCL0 compute buffer size = 1501.00 MiB
|
||||
llama_new_context_with_model: SYCL_Host compute buffer size = 58.97 MiB
|
||||
llama_new_context_with_model: graph nodes = 874
|
||||
llama_new_context_with_model: graph splits = 2
|
||||
llama_init_from_model: KV self size = 138.25 MiB, K (f16): 69.12 MiB, V (f16): 69.12 MiB
|
||||
llama_init_from_model: SYCL_Host output buffer size = 0.58 MiB
|
||||
llama_init_from_model: SYCL0 compute buffer size = 1501.00 MiB
|
||||
llama_init_from_model: SYCL_Host compute buffer size = 59.28 MiB
|
||||
llama_init_from_model: graph nodes = 874
|
||||
llama_init_from_model: graph splits = 2
|
||||
common_init_from_params: setting dry_penalty_last_n to ctx_size = 2528
|
||||
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
|
||||
main: llama threadpool init, n_threads = 8
|
||||
|
||||
system_info: n_threads = 8 (n_threads_batch = 8) / 22 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 |
|
||||
system_info: n_threads = 8 (n_threads_batch = 8) / 32 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 |
|
||||
|
||||
sampler seed: 341519086
|
||||
sampler params:
|
||||
sampler seed: 1856767110
|
||||
sampler params:
|
||||
repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
|
||||
dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = -1
|
||||
top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, temp = 0.000
|
||||
dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = 2528
|
||||
top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, top_n_sigma = -1.000, temp = 0.000
|
||||
mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
|
||||
sampler chain: logits -> logit-bias -> penalties -> dry -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist
|
||||
|
||||
sampler chain: logits -> logit-bias -> penalties -> dry -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist
|
||||
generate: n_ctx = 2528, n_batch = 4096, n_predict = 2048, n_keep = 1
|
||||
|
||||
<think>
|
||||
|
|
@ -147,7 +152,7 @@ llama_perf_context_print: total time = xxxxx.xx ms / 1385 tokens
|
|||
在运行以下命令之前,请将 `PATH\TO\DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf` 更改为你的模型路径。
|
||||
|
||||
```bash
|
||||
./llama-cli -m /PATH/TO/DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf -p "A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think> <answer> answer here </answer>. User: Question:The product of the ages of three teenagers is 4590. How old is the oldest? a. 18 b. 19 c. 15 d. 17 Assistant: <think>" -n 2048 -t 8 -e -ngl 99 --color -c 2500 --temp 0
|
||||
./llama-cli -m /PATH/TO/DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf -p "A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think> <answer> answer here </answer>. User: Question:The product of the ages of three teenagers is 4590. How old is the oldest? a. 18 b. 19 c. 15 d. 17 Assistant: <think>" -n 2048 -t 8 -e -ngl 99 --color -c 2500 --temp 0 -no-cnv
|
||||
```
|
||||
|
||||
部分输出:
|
||||
|
|
@ -158,27 +163,32 @@ Found 1 SYCL devices:
|
|||
| | | | |compute|Max work|sub |mem | |
|
||||
|ID| Device Type| Name|Version|units |group |group|size | Driver version|
|
||||
|--|-------------------|---------------------------------------|-------|-------|--------|-----|-------|---------------------|
|
||||
| 0| [level_zero:gpu:0]| Intel Arc Graphics| 12.71| 128| 1024| 32| 13578M| 1.3.27504|
|
||||
| 0| [level_zero:gpu:0]| Intel Arc A770 Graphics| 12.55| 512| 1024| 32| 16225M| 1.6.31294.120000|
|
||||
SYCL Optimization Feature:
|
||||
|ID| Device Type|Reorder|
|
||||
|--|-------------------|-------|
|
||||
| 0| [level_zero:gpu:0]| Y|
|
||||
llama_kv_cache_init: kv_size = 2528, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 28, can_shift = 1
|
||||
llama_kv_cache_init: SYCL0 KV buffer size = 138.25 MiB
|
||||
llama_new_context_with_model: KV self size = 138.25 MiB, K (f16): 69.12 MiB, V (f16): 69.12 MiB
|
||||
llama_new_context_with_model: SYCL_Host output buffer size = 0.58 MiB
|
||||
llama_new_context_with_model: SYCL0 compute buffer size = 1501.00 MiB
|
||||
llama_new_context_with_model: SYCL_Host compute buffer size = 58.97 MiB
|
||||
llama_new_context_with_model: graph nodes = 874
|
||||
llama_new_context_with_model: graph splits = 2
|
||||
llama_init_from_model: KV self size = 138.25 MiB, K (f16): 69.12 MiB, V (f16): 69.12 MiB
|
||||
llama_init_from_model: SYCL_Host output buffer size = 0.58 MiB
|
||||
llama_init_from_model: SYCL0 compute buffer size = 1501.00 MiB
|
||||
llama_init_from_model: SYCL_Host compute buffer size = 59.28 MiB
|
||||
llama_init_from_model: graph nodes = 874
|
||||
llama_init_from_model: graph splits = 2
|
||||
common_init_from_params: setting dry_penalty_last_n to ctx_size = 2528
|
||||
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
|
||||
main: llama threadpool init, n_threads = 8
|
||||
|
||||
system_info: n_threads = 8 (n_threads_batch = 8) / 22 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 |
|
||||
system_info: n_threads = 8 (n_threads_batch = 8) / 32 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 |
|
||||
|
||||
sampler seed: 341519086
|
||||
sampler params:
|
||||
sampler seed: 1856767110
|
||||
sampler params:
|
||||
repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
|
||||
dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = -1
|
||||
top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, temp = 0.000
|
||||
dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = 2528
|
||||
top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, top_n_sigma = -1.000, temp = 0.000
|
||||
mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
|
||||
sampler chain: logits -> logit-bias -> penalties -> dry -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist
|
||||
|
||||
sampler chain: logits -> logit-bias -> penalties -> dry -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist
|
||||
generate: n_ctx = 2528, n_batch = 4096, n_predict = 2048, n_keep = 1
|
||||
|
||||
<think>
|
||||
|
|
@ -213,7 +223,7 @@ FlashMoE 是一款基于 `llama.cpp` 构建的命令行工具,针对 DeepSeek
|
|||
请将 `/PATH/TO/DeepSeek-R1-Q4_K_M-00001-of-00009.gguf` 更改为您的模型路径,然后运行 `DeepSeek-R1-Q4_K_M.gguf`
|
||||
|
||||
```bash
|
||||
./flash-moe -m /PATH/TO/DeepSeek-R1-Q4_K_M-00001-of-00009.gguf --prompt "What's AI?"
|
||||
./flash-moe -m /PATH/TO/DeepSeek-R1-Q4_K_M-00001-of-00009.gguf --prompt "What's AI?" -no-cnv
|
||||
```
|
||||
|
||||
部分输出:
|
||||
|
|
|
|||
Loading…
Reference in a new issue