Merge pull request #10697 from MargarettMao/ceval
combine english and chinese, remove nan
This commit is contained in:
commit
0d518aab8d
4 changed files with 61 additions and 75 deletions
|
|
@ -35,9 +35,8 @@ def make_csv(result_dict, output_path=None):
|
||||||
current_date = datetime.datetime.now().strftime("%Y-%m-%d")
|
current_date = datetime.datetime.now().strftime("%Y-%m-%d")
|
||||||
file_name = f'results_{current_date}.csv'
|
file_name = f'results_{current_date}.csv'
|
||||||
full_path = os.path.join(output_path, file_name) if output_path else file_name
|
full_path = os.path.join(output_path, file_name) if output_path else file_name
|
||||||
print('Writing to', full_path)
|
|
||||||
file_name = full_path
|
file_name = full_path
|
||||||
headers = ["Index", "Model", "Precision", "en", "zh"]
|
headers = ["Index", "Model", "Precision", "ppl_result"]
|
||||||
|
|
||||||
with open(file_name, mode='w', newline='') as csv_file:
|
with open(file_name, mode='w', newline='') as csv_file:
|
||||||
writer = csv.writer(csv_file)
|
writer = csv.writer(csv_file)
|
||||||
|
|
@ -46,10 +45,10 @@ def make_csv(result_dict, output_path=None):
|
||||||
for model, model_results in result_dict.items():
|
for model, model_results in result_dict.items():
|
||||||
for precision, prec_results in model_results.items():
|
for precision, prec_results in model_results.items():
|
||||||
row = [index, model, precision]
|
row = [index, model, precision]
|
||||||
for language in headers[3:]:
|
for language in ["en","zh"]:
|
||||||
task_results = prec_results.get(language.lower(), None)
|
task_results = prec_results.get(language.lower(), None)
|
||||||
if task_results is None:
|
if task_results is None:
|
||||||
row.append("")
|
continue
|
||||||
else:
|
else:
|
||||||
result = task_results["results"]
|
result = task_results["results"]
|
||||||
row.append("%.4f" % result)
|
row.append("%.4f" % result)
|
||||||
|
|
@ -89,6 +88,7 @@ def main(*args):
|
||||||
output_path = args[2]
|
output_path = args[2]
|
||||||
|
|
||||||
merged_results = merge_results(input_path)
|
merged_results = merge_results(input_path)
|
||||||
|
|
||||||
make_csv(merged_results, output_path)
|
make_csv(merged_results, output_path)
|
||||||
|
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -35,8 +35,8 @@ def make_table(result_dict):
|
||||||
"""Generate table of results."""
|
"""Generate table of results."""
|
||||||
md_writer = MarkdownTableWriter()
|
md_writer = MarkdownTableWriter()
|
||||||
latex_writer = LatexTableWriter()
|
latex_writer = LatexTableWriter()
|
||||||
md_writer.headers = ["Model", "Precision", "en", "zh"]
|
md_writer.headers = ["Model", "Precision", "ppl_result"]
|
||||||
latex_writer.headers = ["Model", "Precision", "en", "zh"]
|
latex_writer.headers = ["Model", "Precision", "ppl_result"]
|
||||||
|
|
||||||
languages = ["en", "zh"]
|
languages = ["en", "zh"]
|
||||||
values = []
|
values = []
|
||||||
|
|
@ -46,7 +46,7 @@ def make_table(result_dict):
|
||||||
for language in languages:
|
for language in languages:
|
||||||
task_results = prec_results.get(language, None)
|
task_results = prec_results.get(language, None)
|
||||||
if task_results is None:
|
if task_results is None:
|
||||||
value.append("")
|
continue
|
||||||
else:
|
else:
|
||||||
result = task_results["results"]
|
result = task_results["results"]
|
||||||
value.append("%.4f" % result)
|
value.append("%.4f" % result)
|
||||||
|
|
|
||||||
|
|
@ -1,8 +1,8 @@
|
||||||
Index,Model,Precision,en,zh
|
Index,Model,Precision,ppl_result
|
||||||
0,Llama-2-7b-chat-hf,fp16,4.7019,
|
0,Llama-2-7b-chat-hf,fp16,4.7019
|
||||||
1,chatglm2-6b,fp16,,22.321
|
1,chatglm2-6b,fp16,22.321
|
||||||
2,chatglm3-6b,fp16,,30.1281
|
2,chatglm3-6b,fp16,30.1281
|
||||||
3,Baichuan2-7B-Chat,fp16,,10.7676
|
3,Baichuan2-7B-Chat,fp16,10.7676
|
||||||
4,mpt-7b-chat,fp16,5.7882,
|
4,mpt-7b-chat,fp16,5.7882
|
||||||
5,falcon-7b-instruct-with-patch,fp16,5.2532,
|
5,falcon-7b-instruct-with-patch,fp16,5.2532
|
||||||
6,mistral-7b-v0.1,fp16,3.6597,
|
6,Mistral-7B-v0.1,fp16,3.6597
|
||||||
|
|
|
||||||
|
|
|
@ -28,7 +28,7 @@ def highlight_vals(val, max=3.0, color1='red', color2='green', color3='yellow',
|
||||||
return 'background-color: %s' % color1
|
return 'background-color: %s' % color1
|
||||||
elif val <= -max:
|
elif val <= -max:
|
||||||
return 'background-color: %s' % color2
|
return 'background-color: %s' % color2
|
||||||
elif val != 0.0 and not pd.isna(val) and is_last:
|
elif val != 0.0 and is_last:
|
||||||
return 'background-color: %s' % color3
|
return 'background-color: %s' % color3
|
||||||
else:
|
else:
|
||||||
return ''
|
return ''
|
||||||
|
|
@ -37,8 +37,8 @@ def nonzero_min(lst):
|
||||||
non_zero_lst = [num for num in lst if num > 0.0]
|
non_zero_lst = [num for num in lst if num > 0.0]
|
||||||
return min(non_zero_lst) if non_zero_lst else None
|
return min(non_zero_lst) if non_zero_lst else None
|
||||||
|
|
||||||
def is_diffs_within_normal_range(diff_en, diff_zh, threshold=5.0):
|
def is_diffs_within_normal_range(diff_ppl_result, threshold=5.0):
|
||||||
return not any(diff < (-threshold) for diff in diff_en + diff_zh if isinstance(diff, float))
|
return not any(diff < (-threshold) for diff in diff_ppl_result if isinstance(diff, float))
|
||||||
|
|
||||||
def add_to_dict(dict, key, value):
|
def add_to_dict(dict, key, value):
|
||||||
if key not in dict:
|
if key not in dict:
|
||||||
|
|
@ -60,9 +60,9 @@ def create_fp16_dict(fp16_path):
|
||||||
model = row['Model']
|
model = row['Model']
|
||||||
# Formalize the data to have 2 decimal places
|
# Formalize the data to have 2 decimal places
|
||||||
fp16_dict[model] = {
|
fp16_dict[model] = {
|
||||||
'en': "{:.2f}".format(row['en']),
|
'ppl_result': "{:.2f}".format(row['ppl_result'])
|
||||||
'zh': "{:.2f}".format(row['zh'])
|
|
||||||
}
|
}
|
||||||
|
|
||||||
return fp16_dict
|
return fp16_dict
|
||||||
|
|
||||||
def calculate_percentage_difference(current, fp16):
|
def calculate_percentage_difference(current, fp16):
|
||||||
|
|
@ -105,9 +105,8 @@ def main():
|
||||||
diffs_within_normal_range = True
|
diffs_within_normal_range = True
|
||||||
|
|
||||||
# Add display of FP16 values for each model and add percentage difference column
|
# Add display of FP16 values for each model and add percentage difference column
|
||||||
for task in ['en', 'zh']:
|
latest_csv['ppl_result_FP16'] = latest_csv['Model'].apply(lambda model: fp16_dict.get(model, {}).get('ppl_result', 'N/A'))
|
||||||
latest_csv[f'{task}_FP16'] = latest_csv['Model'].apply(lambda model: fp16_dict.get(model, {}).get(task, 'N/A'))
|
latest_csv['ppl_result_diff_FP16(%)'] = latest_csv.apply(lambda row: calculate_percentage_difference(row['ppl_result'], row['ppl_result_FP16']), axis=1)
|
||||||
latest_csv[f'{task}_diff_FP16(%)'] = latest_csv.apply(lambda row: calculate_percentage_difference(row[task], row[f'{task}_FP16']), axis=1)
|
|
||||||
|
|
||||||
if len(csv_files)>1:
|
if len(csv_files)>1:
|
||||||
if args.baseline_path:
|
if args.baseline_path:
|
||||||
|
|
@ -115,13 +114,10 @@ def main():
|
||||||
else:
|
else:
|
||||||
previous_csv = pd.read_csv(csv_files[1], index_col=0)
|
previous_csv = pd.read_csv(csv_files[1], index_col=0)
|
||||||
|
|
||||||
last_en=['']*len(latest_csv.index)
|
last_ppl_result=['']*len(latest_csv.index)
|
||||||
diff_en=['']*len(latest_csv.index)
|
diff_ppl_result=['']*len(latest_csv.index)
|
||||||
last_zh=['']*len(latest_csv.index)
|
|
||||||
diff_zh=['']*len(latest_csv.index)
|
|
||||||
|
|
||||||
en='en'
|
ppl_result = 'ppl_result'
|
||||||
zh='zh'
|
|
||||||
|
|
||||||
csv_dict = {}
|
csv_dict = {}
|
||||||
for csv_file in csv_files:
|
for csv_file in csv_files:
|
||||||
|
|
@ -129,17 +125,14 @@ def main():
|
||||||
for current_csv_ind,current_csv_row in current_csv.iterrows():
|
for current_csv_ind,current_csv_row in current_csv.iterrows():
|
||||||
current_csv_model=current_csv_row['Model'].strip()
|
current_csv_model=current_csv_row['Model'].strip()
|
||||||
current_csv_precision=current_csv_row['Precision'].strip()
|
current_csv_precision=current_csv_row['Precision'].strip()
|
||||||
current_csv_model_en=current_csv_model+'-'+current_csv_precision+'-'+'en'
|
current_csv_model_ppl_result=current_csv_model+'-'+current_csv_precision+'-'+'ppl_result'
|
||||||
current_csv_model_zh=current_csv_model+'-'+current_csv_precision+'-'+'zh'
|
add_to_dict(csv_dict, current_csv_model_ppl_result, current_csv_row[ppl_result])
|
||||||
add_to_dict(csv_dict, current_csv_model_en, current_csv_row[en])
|
|
||||||
add_to_dict(csv_dict, current_csv_model_zh, current_csv_row[zh])
|
|
||||||
|
|
||||||
for latest_csv_ind,latest_csv_row in latest_csv.iterrows():
|
for latest_csv_ind,latest_csv_row in latest_csv.iterrows():
|
||||||
|
|
||||||
latest_csv_model=latest_csv_row['Model'].strip()
|
latest_csv_model=latest_csv_row['Model'].strip()
|
||||||
latest_csv_precision=latest_csv_row['Precision'].strip()
|
latest_csv_precision=latest_csv_row['Precision'].strip()
|
||||||
latest_en=latest_csv_row[en]
|
latest_ppl_result=latest_csv_row[ppl_result]
|
||||||
latest_zh=latest_csv_row[zh]
|
|
||||||
|
|
||||||
in_previous_flag=False
|
in_previous_flag=False
|
||||||
|
|
||||||
|
|
@ -150,39 +143,34 @@ def main():
|
||||||
|
|
||||||
if latest_csv_model==previous_csv_model and latest_csv_precision==previous_csv_precision:
|
if latest_csv_model==previous_csv_model and latest_csv_precision==previous_csv_precision:
|
||||||
|
|
||||||
previous_en=previous_csv_row[en]
|
previous_ppl_result=previous_csv_row[ppl_result]
|
||||||
previous_zh=previous_csv_row[zh]
|
|
||||||
if previous_en > 0.0 or previous_zh > 0.0:
|
if previous_ppl_result > 0.0:
|
||||||
last_en[latest_csv_ind]=previous_en
|
last_ppl_result[latest_csv_ind]=previous_ppl_result
|
||||||
diff_en[latest_csv_ind]=round((latest_en-previous_en)*100/previous_en,2)
|
diff_ppl_result[latest_csv_ind]=round((latest_ppl_result-previous_ppl_result)*100/previous_ppl_result,2)
|
||||||
last_zh[latest_csv_ind]=previous_zh
|
|
||||||
diff_zh[latest_csv_ind]=round((latest_zh-previous_zh)*100/previous_zh,2)
|
|
||||||
in_previous_flag=True
|
in_previous_flag=True
|
||||||
|
|
||||||
if not in_previous_flag:
|
if not in_previous_flag:
|
||||||
last_en[latest_csv_ind]=pd.NA
|
last_ppl_result[latest_csv_ind]=pd.NA
|
||||||
diff_en[latest_csv_ind]=pd.NA
|
diff_ppl_result[latest_csv_ind]=pd.NA
|
||||||
last_zh[latest_csv_ind]=pd.NA
|
|
||||||
diff_zh[latest_csv_ind]=pd.NA
|
|
||||||
|
|
||||||
latest_csv.insert(loc=9,column='last_en',value=last_en)
|
|
||||||
latest_csv.insert(loc=10,column='diff_en(%)',value=diff_en)
|
|
||||||
latest_csv.insert(loc=11,column='last_zh',value=last_zh)
|
|
||||||
latest_csv.insert(loc=12,column='diff_zh(%)',value=diff_zh)
|
|
||||||
|
|
||||||
|
|
||||||
diffs_within_normal_range = is_diffs_within_normal_range(diff_en, diff_zh, threshold=highlight_threshold)
|
latest_csv.insert(loc=6,column='last_ppl_result',value=last_ppl_result)
|
||||||
|
latest_csv.insert(loc=7,column='ppl_result_diff_last(%)',value=diff_ppl_result)
|
||||||
|
|
||||||
subset1=['diff_en(%)','diff_zh(%)']
|
|
||||||
|
|
||||||
columns={'en': '{:.2f}', 'zh': '{:.2f}', 'last_en': '{:.2f}', 'diff_en(%)': '{:.2f}',
|
diffs_within_normal_range = is_diffs_within_normal_range(diff_ppl_result, threshold=highlight_threshold)
|
||||||
'last_zh': '{:.2f}', 'diff_zh(%)': '{:.2f}'}
|
|
||||||
|
|
||||||
|
columns={'ppl_result': '{:.2f}', 'last_ppl_result': '{:.2f}', 'ppl_result_diff_last(%)': '{:.2f}'}
|
||||||
latest_csv.drop('Index', axis=1, inplace=True)
|
latest_csv.drop('Index', axis=1, inplace=True)
|
||||||
|
|
||||||
styled_df = latest_csv.style.format(columns).applymap(lambda val: highlight_vals(val, max=3.0, is_last=True), subset=subset1)
|
styled_df = latest_csv.style.format(columns).applymap(lambda val: highlight_vals(val, max=highlight_threshold, is_last=True), subset=['ppl_result_diff_last(%)'])
|
||||||
for task in ['en', 'zh']:
|
styled_df = styled_df.applymap(lambda val: highlight_vals(val, max=highlight_threshold, is_last=False), subset=['ppl_result_diff_FP16(%)'])
|
||||||
styled_df = styled_df.applymap(lambda val: highlight_vals(val, max=highlight_threshold, is_last=False), subset=[f'{task}_diff_FP16(%)'])
|
|
||||||
|
else:
|
||||||
|
columns={'ppl_result': '{:.2f}'}
|
||||||
|
latest_csv.drop('Index', axis=1, inplace=True)
|
||||||
|
styled_df = latest_csv.style.format(columns).applymap(lambda val: highlight_vals(val, max=highlight_threshold, is_last=False), subset=['ppl_result_diff_FP16(%)'])
|
||||||
|
|
||||||
# add css style to restrict width and wrap text
|
# add css style to restrict width and wrap text
|
||||||
styled_df.set_table_styles([{
|
styled_df.set_table_styles([{
|
||||||
|
|
@ -194,8 +182,6 @@ def main():
|
||||||
|
|
||||||
with open(daily_html, 'w') as f:
|
with open(daily_html, 'w') as f:
|
||||||
f.write(html_output)
|
f.write(html_output)
|
||||||
else:
|
|
||||||
latest_csv.to_html(daily_html)
|
|
||||||
|
|
||||||
if args.baseline_path and not diffs_within_normal_range:
|
if args.baseline_path and not diffs_within_normal_range:
|
||||||
print("The diffs are outside the normal range: %" + str(highlight_threshold))
|
print("The diffs are outside the normal range: %" + str(highlight_threshold))
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue