Add C-Eval HTML report (#10294)
* Add C-Eval HTML report * Fix C-Eval workflow pr trigger path * Fix C-Eval workflow typos * Add permissions to C-Eval workflow * Fix C-Eval workflow typo * Add pandas dependency * Fix C-Eval workflow typo
This commit is contained in:
parent
496d18ab6d
commit
0c8d3c9830
4 changed files with 299 additions and 22 deletions
94
.github/workflows/llm-c-evaluation.yml
vendored
94
.github/workflows/llm-c-evaluation.yml
vendored
|
|
@ -15,7 +15,7 @@ on:
|
|||
pull_request:
|
||||
branches: [main]
|
||||
paths:
|
||||
- ".github/workflows/llm-ceval.yml"
|
||||
- ".github/workflows/llm-c-evaluation.yml"
|
||||
# Allows you to run this workflow manually from the Actions tab
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
|
|
@ -84,7 +84,8 @@ jobs:
|
|||
echo "model_name=$model_name" >> $GITHUB_OUTPUT
|
||||
echo "precision=$precision" >> $GITHUB_OUTPUT
|
||||
echo "runner=$runner" >> $GITHUB_OUTPUT
|
||||
llm-ceval-evaluation:
|
||||
|
||||
llm-c-evaluation:
|
||||
timeout-minutes: 1200
|
||||
needs: [llm-cpp-build, set-matrix]
|
||||
strategy:
|
||||
|
|
@ -94,7 +95,7 @@ jobs:
|
|||
model_name: ${{ fromJson(needs.set-matrix.outputs.model_name) }}
|
||||
precision: ${{ fromJson(needs.set-matrix.outputs.precision) }}
|
||||
device: [xpu]
|
||||
|
||||
|
||||
runs-on: ${{ fromJson(needs.set-matrix.outputs.runner) }}
|
||||
env:
|
||||
ANALYTICS_ZOO_ROOT: ${{ github.workspace }}
|
||||
|
|
@ -112,6 +113,11 @@ jobs:
|
|||
python -m pip install --upgrade pip
|
||||
python -m pip install --upgrade setuptools==58.0.4
|
||||
python -m pip install --upgrade wheel
|
||||
pip install einops
|
||||
pip install thefuzz
|
||||
pip install tiktoken
|
||||
pip install transformers==4.31.0
|
||||
pip install transformers_stream_generator
|
||||
|
||||
- name: Download llm binary
|
||||
uses: ./.github/actions/llm/download-llm-binary
|
||||
|
|
@ -150,15 +156,6 @@ jobs:
|
|||
DATA_PATH=$CEVAL_HF_HOME/data
|
||||
unzip -o "$CEVAL_HF_HOME/data/ceval-exam.zip" -d "$CEVAL_HF_HOME/data"
|
||||
wget -r -nH -nc --no-verbose --cut-dirs=1 ${LLM_FTP_URL}/llm/${{ matrix.model_name }} -P ${ORIGIN_DIR}
|
||||
|
||||
- name: Install Dependencies
|
||||
shell: bash
|
||||
run: |
|
||||
pip install einops
|
||||
pip install thefuzz
|
||||
pip install tiktoken
|
||||
pip install transformers==4.31.0
|
||||
pip install transformers_stream_generator
|
||||
|
||||
- name: Run C-Eval
|
||||
shell: bash
|
||||
|
|
@ -183,7 +180,7 @@ jobs:
|
|||
|
||||
llm-ceval-summary:
|
||||
if: ${{ always() }}
|
||||
needs: llm-ceval-evaluation
|
||||
needs: llm-c-evaluation
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
|
@ -191,13 +188,80 @@ jobs:
|
|||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: 3.9
|
||||
- name: Download all results
|
||||
- name: Install dependencies
|
||||
shell: bash
|
||||
run: |
|
||||
pip install --upgrade pip
|
||||
pip install pandas==1.5.3
|
||||
|
||||
- name: Download ceval results
|
||||
uses: actions/download-artifact@v3
|
||||
with:
|
||||
name: ceval_results
|
||||
path: results
|
||||
|
||||
- name: Summarize the results
|
||||
shell: bash
|
||||
run: |
|
||||
ls results
|
||||
python ${{ github.workspace }}/python/llm/dev/benchmark/ceval/organize_results.py results/
|
||||
echo "DATE=$(date +%Y-%m-%d)" >> $GITHUB_ENV
|
||||
python ${{ github.workspace }}/python/llm/dev/benchmark/ceval/organize_results.py results/ results/
|
||||
|
||||
- name: Set artifact file path
|
||||
run: echo "ARTIFACT_PATH=results/results_${{ env.DATE }}.csv" >> $GITHUB_ENV
|
||||
|
||||
- uses: actions/upload-artifact@v3
|
||||
with:
|
||||
name: results_${{ env.DATE }}
|
||||
path: ${{ env.ARTIFACT_PATH }}
|
||||
|
||||
llm-ceval-html:
|
||||
if: ${{github.event_name == 'schedule' || github.event_name == 'pull_request'}}
|
||||
needs: [llm-c-evaluation, llm-ceval-summary]
|
||||
runs-on: ["self-hosted", "llm", "accuracy1", "accuracy-nightly"]
|
||||
steps:
|
||||
- uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3
|
||||
- name: Set up Python 3.9
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: 3.9
|
||||
- name: Install dependencies
|
||||
shell: bash
|
||||
run: |
|
||||
pip install --upgrade pip
|
||||
pip install numpy
|
||||
pip install pandas==1.5.3
|
||||
pip install jsonlines pytablewriter regex
|
||||
|
||||
- name: Set output path
|
||||
shell: bash
|
||||
run: |
|
||||
echo "DATE=$(date +%Y-%m-%d)" >> $GITHUB_ENV
|
||||
if ${{github.event_name == 'pull_request'}}; then
|
||||
echo 'ACC_FOLDER=/home/arda/ceval-action-runners/pr-accuracy-data' >> $GITHUB_ENV
|
||||
fi
|
||||
if ${{github.event_name == 'schedule'}}; then
|
||||
echo 'ACC_FOLDER=/home/arda/ceval-action-runners/nightly-accuracy-data' >> $GITHUB_ENV
|
||||
fi
|
||||
|
||||
- name: Create ceval results directory if not exists
|
||||
run: |
|
||||
if [ ! -d "${{ env.ACC_FOLDER }}" ]; then
|
||||
mkdir -p "${{ env.ACC_FOLDER }}"
|
||||
fi
|
||||
|
||||
- name: Download ceval results
|
||||
uses: actions/download-artifact@v3
|
||||
with:
|
||||
name: results_${{ env.DATE }}
|
||||
path: ${{ env.ACC_FOLDER }}
|
||||
rename: results_${{ env.DATE }}.csv
|
||||
|
||||
- name: Update HTML
|
||||
working-directory: ${{ github.workspace }}/python/llm/test/benchmark/ceval/
|
||||
shell: bash
|
||||
run: |
|
||||
python ceval_csv_to_html.py -f $ACC_FOLDER
|
||||
if ${{github.event_name == 'schedule'}}; then
|
||||
python update_html_in_parent_folder.py -f $ACC_FOLDER
|
||||
fi
|
||||
|
|
@ -15,11 +15,17 @@
|
|||
#
|
||||
|
||||
import os
|
||||
import pdb
|
||||
import sys
|
||||
import csv
|
||||
import json
|
||||
import datetime
|
||||
import pandas as pd
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
result_path = sys.argv[1]
|
||||
output_path = sys.argv[2]
|
||||
|
||||
column_size = [25, 15, 10, 18, 15, 10, 10, 10]
|
||||
pad_string = lambda x, l: [i.ljust(j) for i, j in zip(x, l)]
|
||||
|
|
@ -49,20 +55,40 @@ if __name__ == '__main__':
|
|||
organized_dict[data['Model Name']] = {}
|
||||
organized_dict[data['Model Name']][data['Precision']] = result_lst
|
||||
|
||||
# define the print precision order
|
||||
precision_order = ['sym_int4', 'mixed_fp4', 'fp4', 'sym_int8', 'fp8_e4m3', 'fp8_e5m2', 'mixed_fp8']
|
||||
|
||||
# define the print precision order
|
||||
model_order = ['chatglm2-6b', 'chinese-llama2-7b', 'Qwen-7B-Chat']
|
||||
precision_order = ['sym_int4', 'fp8_e5m2']
|
||||
|
||||
# print the results
|
||||
for model_name in organized_dict.keys():
|
||||
for precision in precision_order:
|
||||
try:
|
||||
# print the result
|
||||
print(' '.join(pad_string(organized_dict[model_name][precision], column_size)))
|
||||
except KeyError:
|
||||
continue
|
||||
|
||||
pass
|
||||
# separate between models
|
||||
print()
|
||||
|
||||
|
||||
|
||||
# initialize the csv file
|
||||
current_date = datetime.datetime.now().strftime("%Y-%m-%d")
|
||||
file_name = f'results_{current_date}.csv'
|
||||
file_name = os.path.join(output_path, file_name) if output_path else file_name
|
||||
print('Writing to', file_name)
|
||||
|
||||
with open(file_name, mode='w', newline='') as csv_file:
|
||||
writer = csv.writer(csv_file)
|
||||
|
||||
headers = ["Model Name", "Precision", 'STEM', 'Social Science', 'Humanities', 'Other', 'Hard', 'Average']
|
||||
writer.writerow(headers)
|
||||
|
||||
# print the results
|
||||
for model_name in model_order:
|
||||
for precision in precision_order:
|
||||
try:
|
||||
# write the result to the csv row
|
||||
writer.writerow(organized_dict[model_name][precision])
|
||||
except KeyError:
|
||||
writer.writerow([model_name, precision]+[pd.NA for i in range(len(headers[2:]))])
|
||||
|
||||
|
||||
|
|
|
|||
138
python/llm/test/benchmark/ceval/ceval_csv_to_html.py
Normal file
138
python/llm/test/benchmark/ceval/ceval_csv_to_html.py
Normal file
|
|
@ -0,0 +1,138 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
# Python program to convert CSV to HTML Table
|
||||
|
||||
import os
|
||||
import sys
|
||||
import argparse
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
def highlight_vals(val, max=3.0, color1='red', color2='green', color3='yellow', is_last=False):
|
||||
if isinstance(val, float):
|
||||
if val > max:
|
||||
return 'background-color: %s' % color2
|
||||
elif val <= -max:
|
||||
return 'background-color: %s' % color1
|
||||
elif val != 0.0 and is_last:
|
||||
return 'background-color: %s' % color3
|
||||
else:
|
||||
return ''
|
||||
|
||||
def calculate_percentage_difference(cur_array, previous_array):
|
||||
new_array = []
|
||||
for i in range(len(cur_array)):
|
||||
if type(cur_array[i]) == type(pd.NA) or type(previous_array[i]) == type(pd.NA):
|
||||
new_array.append(pd.NA)
|
||||
else:
|
||||
new_array.append(round((cur_array[i]-previous_array[i])*100/previous_array[i], 2))
|
||||
return np.array(new_array)
|
||||
|
||||
def check_diffs_within_normal_range(latest_csv, highlight_set, threshold):
|
||||
within = True
|
||||
|
||||
for column in highlight_set:
|
||||
for value in latest_csv[column]:
|
||||
if type(value) != type(pd.NA):
|
||||
within = within and abs(value) <= threshold
|
||||
|
||||
return within
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="convert .csv file to .html file")
|
||||
parser.add_argument("-f", "--folder_path", type=str, dest="folder_path",
|
||||
help="The directory which stores the .csv file", default="/home/arda/BigDL/python/llm/dev/benchmark/ceval")
|
||||
parser.add_argument("-t", "--threshold", type=float, dest="threshold",
|
||||
help="the threshold of highlight values", default=3.0)
|
||||
parser.add_argument("-b", "--baseline_path", type=str, dest="baseline_path",
|
||||
help="the baseline path which stores the baseline.csv file")
|
||||
args = parser.parse_args()
|
||||
|
||||
csv_files = []
|
||||
for file_name in os.listdir(args.folder_path):
|
||||
file_path = os.path.join(args.folder_path, file_name)
|
||||
if os.path.isfile(file_path) and file_name.endswith(".csv"):
|
||||
csv_files.append(file_path)
|
||||
csv_files.sort(reverse=True)
|
||||
|
||||
highlight_threshold=args.threshold
|
||||
|
||||
# get the newest csv file
|
||||
latest_csv = pd.read_csv(csv_files[0], index_col=0)
|
||||
|
||||
# create daily html file
|
||||
daily_html=csv_files[0].split(".")[0]+".html"
|
||||
|
||||
# add index column
|
||||
latest_csv.reset_index(inplace=True)
|
||||
|
||||
# if found more than 1 csv file
|
||||
if len(csv_files)>1:
|
||||
if args.baseline_path:
|
||||
previous_csv = pd.read_csv(args.baseline_path, index_col=0)
|
||||
else:
|
||||
previous_csv = pd.read_csv(csv_files[1], index_col=0)
|
||||
|
||||
subjects = ['STEM', 'Social Science', 'Humanities', 'Other', 'Hard', 'Average']
|
||||
precisions = ['sym_int4', 'fp8_e5m2']
|
||||
highlight_set = []
|
||||
|
||||
insert_column = latest_csv.shape[-1]-1
|
||||
# in the make_csv step we will handle the missing values and make it pd.NA
|
||||
for subject in subjects:
|
||||
# insert last accuracy task
|
||||
latest_csv.insert(loc=insert_column, column=f'last_{subject}',
|
||||
value=previous_csv[subject])
|
||||
|
||||
# insert precentage difference between previous and current value
|
||||
latest_csv.insert(
|
||||
loc=insert_column+1,
|
||||
column=f'diff_{subject}(%)',
|
||||
value=calculate_percentage_difference(latest_csv[subject], previous_csv[subject]))
|
||||
# append in the highlight set
|
||||
highlight_set.append(f'diff_{subject}(%)')
|
||||
|
||||
# update insert column
|
||||
insert_column += 2
|
||||
|
||||
columns = {}
|
||||
for column in latest_csv.columns.values.tolist():
|
||||
columns[column] = '{:.2f}'
|
||||
|
||||
styled_df = latest_csv.style.format(columns).applymap(lambda val: highlight_vals(val, max=3.0, is_last=True), subset=highlight_set)
|
||||
|
||||
# add css style to restrict width and wrap text
|
||||
styled_df.set_table_styles([{
|
||||
'selector': 'th, td',
|
||||
'props': [('max-width', '88px'), ('word-wrap', 'break-word')]
|
||||
}], overwrite=False)
|
||||
|
||||
html_output = styled_df.set_table_attributes("border=1").to_html()
|
||||
|
||||
with open(daily_html, 'w') as f:
|
||||
f.write(html_output)
|
||||
else:
|
||||
latest_csv.to_html(daily_html)
|
||||
|
||||
if args.baseline_path and not check_diffs_within_normal_range(latest_csv, highlight_set, highlight_threshold):
|
||||
print("The diffs are outside the normal range: %" + str(highlight_threshold))
|
||||
return 1
|
||||
return 0
|
||||
|
||||
if __name__ == "__main__":
|
||||
sys.exit(main())
|
||||
|
|
@ -0,0 +1,49 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
# Python program to update Html in parent folder
|
||||
|
||||
import os
|
||||
import shutil
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
|
||||
def update_html_in_parent_folder(folder_path):
|
||||
# Get parent folder
|
||||
parent_folder = Path(folder_path).parent
|
||||
|
||||
# List all html files under parent folder and delete them
|
||||
for html_file in parent_folder.glob('*.html'):
|
||||
html_file.unlink()
|
||||
|
||||
# Find latest html file under folder_path
|
||||
latest_html_file = max(Path(folder_path).glob('*.html'), key=os.path.getctime, default=None)
|
||||
|
||||
# Copy the latest html file to parent folder
|
||||
if latest_html_file is not None:
|
||||
shutil.copy(latest_html_file, parent_folder)
|
||||
|
||||
print(latest_html_file.name)
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Update HTML in parent folder.")
|
||||
parser.add_argument("-f", "--folder", type=str, help="Path to the folder")
|
||||
args = parser.parse_args()
|
||||
|
||||
update_html_in_parent_folder(args.folder)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Loading…
Reference in a new issue