[REFINE] graphmode code (#12540)
This commit is contained in:
parent
caf15cc5ef
commit
0b953e61ef
2 changed files with 3 additions and 87 deletions
|
|
@ -25,15 +25,11 @@ model_path = args.model_path
|
||||||
|
|
||||||
dtype=torch.bfloat16
|
dtype=torch.bfloat16
|
||||||
num_labels = 5
|
num_labels = 5
|
||||||
|
|
||||||
model_name=model_path
|
model_name=model_path
|
||||||
|
|
||||||
save_directory = model_name + "-classification"
|
save_directory = model_name + "-classification"
|
||||||
|
|
||||||
# Initialize the tokenizer
|
# Initialize the tokenizer
|
||||||
# Need padding from the left and padding to 1024
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
||||||
# tokenizer.padding_side = "left"
|
|
||||||
tokenizer.pad_token = tokenizer.eos_token
|
tokenizer.pad_token = tokenizer.eos_token
|
||||||
tokenizer.save_pretrained(save_directory)
|
tokenizer.save_pretrained(save_directory)
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -17,6 +17,7 @@
|
||||||
import torch
|
import torch
|
||||||
import time
|
import time
|
||||||
import argparse
|
import argparse
|
||||||
|
import contextlib
|
||||||
from transformers import GPT2ForSequenceClassification, AutoTokenizer, AutoModelForSequenceClassification, AutoConfig, Qwen2ForSequenceClassification
|
from transformers import GPT2ForSequenceClassification, AutoTokenizer, AutoModelForSequenceClassification, AutoConfig, Qwen2ForSequenceClassification
|
||||||
from torch.profiler import profile, record_function, ProfilerActivity, schedule
|
from torch.profiler import profile, record_function, ProfilerActivity, schedule
|
||||||
|
|
||||||
|
|
@ -36,12 +37,6 @@ engine = args.engine
|
||||||
model_path = args.model_path
|
model_path = args.model_path
|
||||||
print(f"The batch size is: {batch_size}, device is {device}")
|
print(f"The batch size is: {batch_size}, device is {device}")
|
||||||
|
|
||||||
|
|
||||||
######################################################################################
|
|
||||||
# PyTorch Profiling with IPEX
|
|
||||||
# export IPEX_ZE_TRACING=1
|
|
||||||
# export ZE_ENABLE_TRACING_LAYER=1
|
|
||||||
import contextlib
|
|
||||||
def profiler_setup(profiling=False, *args, **kwargs):
|
def profiler_setup(profiling=False, *args, **kwargs):
|
||||||
if profiling:
|
if profiling:
|
||||||
return torch.profiler.profile(*args, **kwargs)
|
return torch.profiler.profile(*args, **kwargs)
|
||||||
|
|
@ -55,21 +50,15 @@ my_schedule = schedule(
|
||||||
active=1
|
active=1
|
||||||
)
|
)
|
||||||
|
|
||||||
# also define a handler for outputing results
|
# define a handler for outputing results
|
||||||
def trace_handler(p):
|
def trace_handler(p):
|
||||||
if(device == 'xpu'):
|
if(device == 'xpu'):
|
||||||
print(p.key_averages().table(sort_by="self_xpu_time_total", row_limit=20))
|
print(p.key_averages().table(sort_by="self_xpu_time_total", row_limit=20))
|
||||||
print(p.key_averages().table(sort_by="cpu_time_total", row_limit=20))
|
print(p.key_averages().table(sort_by="cpu_time_total", row_limit=20))
|
||||||
# p.export_chrome_trace("./trace_" + str(p.step_num) + ".json")
|
|
||||||
#######################################################################################
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
dtype = torch.bfloat16 if device == 'cpu' else torch.float16
|
dtype = torch.bfloat16 if device == 'cpu' else torch.float16
|
||||||
num_labels = 5
|
num_labels = 5
|
||||||
|
|
||||||
model_name = model_path
|
model_name = model_path
|
||||||
|
|
||||||
model_name = model_name + "-classification"
|
model_name = model_name + "-classification"
|
||||||
model_name_ov = model_name + "-ov"
|
model_name_ov = model_name + "-ov"
|
||||||
model_name_ov = model_name_ov + "-fp16"
|
model_name_ov = model_name_ov + "-fp16"
|
||||||
|
|
@ -77,11 +66,9 @@ model_name_ov = model_name_ov + "-fp16"
|
||||||
if (engine == 'ipex') :
|
if (engine == 'ipex') :
|
||||||
import torch
|
import torch
|
||||||
import intel_extension_for_pytorch as ipex
|
import intel_extension_for_pytorch as ipex
|
||||||
# Need padding from the left and padding to 1024
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
||||||
tokenizer.padding_side = "left"
|
tokenizer.padding_side = "left"
|
||||||
tokenizer.pad_token = tokenizer.eos_token
|
tokenizer.pad_token = tokenizer.eos_token
|
||||||
|
|
||||||
model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=dtype,
|
model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=dtype,
|
||||||
pad_token_id=tokenizer.eos_token_id,
|
pad_token_id=tokenizer.eos_token_id,
|
||||||
low_cpu_mem_usage=True
|
low_cpu_mem_usage=True
|
||||||
|
|
@ -106,122 +93,55 @@ else:
|
||||||
tokenizer.pad_token = tokenizer.eos_token
|
tokenizer.pad_token = tokenizer.eos_token
|
||||||
model = OVModelForSequenceClassification.from_pretrained(model_name_ov, torch_dtype=dtype).to(device)
|
model = OVModelForSequenceClassification.from_pretrained(model_name_ov, torch_dtype=dtype).to(device)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# Intel(R) Extension for PyTorch*
|
# Intel(R) Extension for PyTorch*
|
||||||
if engine == 'ipex':
|
if engine == 'ipex':
|
||||||
if device == 'cpu':
|
if device == 'cpu':
|
||||||
# model = ipex.llm.optimize(model, dtype=dtype, inplace=True, deployment_mode=True)
|
|
||||||
# ############## TorchDynamo ###############
|
|
||||||
model = ipex.optimize(model, dtype=torch.bfloat16, weights_prepack=False)
|
model = ipex.optimize(model, dtype=torch.bfloat16, weights_prepack=False)
|
||||||
model = torch.compile(model, backend='ipex')
|
model = torch.compile(model, backend='ipex')
|
||||||
# ##########################################
|
|
||||||
else: # Intel XPU
|
else: # Intel XPU
|
||||||
#model = ipex.llm.optimize(model, dtype=dtype, device="xpu", inplace=True)
|
|
||||||
model = ipex.optimize(model, dtype=dtype, inplace=True)
|
model = ipex.optimize(model, dtype=dtype, inplace=True)
|
||||||
|
|
||||||
model=torch.compile(model, backend="inductor")
|
model=torch.compile(model, backend="inductor")
|
||||||
print(model)
|
print(model)
|
||||||
|
|
||||||
# # #######calulate the total num of parameters########
|
|
||||||
# def model_size(model):
|
|
||||||
# return sum(t.numel() for t in model.parameters())
|
|
||||||
# print(f"GPT2 size: {model_size(model)/1000**2:.1f}M parameters")
|
|
||||||
# # # #######print model information ###################
|
|
||||||
# print(model)
|
|
||||||
|
|
||||||
# ########Enable the BetterTransformer ###################
|
|
||||||
# only Better Transformer only support GPT2, not support Qwen2
|
|
||||||
# model = BetterTransformer.transform(model)
|
|
||||||
#elif engine == 'ipex-llm':
|
|
||||||
# model = ipex.optimize(model, dtype=dtype, inplace=True)
|
|
||||||
# model=torch.compile(model) #backend="inductor")
|
|
||||||
elif engine == 'ov':
|
elif engine == 'ov':
|
||||||
print("OV inference")
|
print("OV inference")
|
||||||
|
|
||||||
|
|
||||||
prompt = ["this is the first prompt"]
|
prompt = ["this is the first prompt"]
|
||||||
prompts = prompt * batch_size
|
prompts = prompt * batch_size
|
||||||
#print(prompts)
|
|
||||||
|
|
||||||
# Tokenize the batch of prompts
|
|
||||||
inputs = tokenizer(prompts, return_tensors="pt", padding="max_length", max_length=1024, truncation=True)
|
inputs = tokenizer(prompts, return_tensors="pt", padding="max_length", max_length=1024, truncation=True)
|
||||||
# print(inputs)
|
|
||||||
|
|
||||||
if engine == 'ipex' or engine == 'ipex-llm':
|
if engine == 'ipex' or engine == 'ipex-llm':
|
||||||
#ipex need move the inputs to device, but OV doesn't need
|
|
||||||
inputs.to(device)
|
inputs.to(device)
|
||||||
|
|
||||||
# Initialize an empty list to store elapsed times
|
|
||||||
elapsed_times = []
|
elapsed_times = []
|
||||||
|
|
||||||
# Loop for batch processing 10 times and calculate the time for every loop
|
|
||||||
with profiler_setup(profiling=enable_profile, activities=[ProfilerActivity.CPU, ProfilerActivity.XPU],
|
with profiler_setup(profiling=enable_profile, activities=[ProfilerActivity.CPU, ProfilerActivity.XPU],
|
||||||
schedule=my_schedule,
|
schedule=my_schedule,
|
||||||
on_trace_ready=trace_handler,
|
on_trace_ready=trace_handler,
|
||||||
# on_trace_ready=torch.profiler.tensorboard_trace_handler('./log/gpt2'),
|
|
||||||
record_shapes=True,
|
record_shapes=True,
|
||||||
with_stack=True
|
with_stack=True
|
||||||
) as prof:
|
) as prof:
|
||||||
|
|
||||||
for i in range(10):
|
for i in range(10):
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
|
|
||||||
# Perform inference
|
|
||||||
with torch.inference_mode():
|
with torch.inference_mode():
|
||||||
# logits = model(**inputs).logits
|
|
||||||
outputs = model(**inputs)
|
outputs = model(**inputs)
|
||||||
logits = outputs.logits
|
logits = outputs.logits
|
||||||
|
|
||||||
# Get the predicted class for each input in the batch
|
|
||||||
predicted_class_ids = logits.argmax(dim=1).tolist()
|
predicted_class_ids = logits.argmax(dim=1).tolist()
|
||||||
|
|
||||||
end_time = time.time()
|
end_time = time.time()
|
||||||
elapsed_time = end_time - start_time
|
elapsed_time = end_time - start_time
|
||||||
|
|
||||||
# Save the elapsed time in the list
|
|
||||||
elapsed_times.append(elapsed_time)
|
elapsed_times.append(elapsed_time)
|
||||||
|
|
||||||
if(enable_profile):
|
if(enable_profile):
|
||||||
prof.step()
|
prof.step()
|
||||||
|
|
||||||
# print(outputs)
|
|
||||||
# print(type(outputs))
|
|
||||||
# print("logits.shape is " + str(logits.shape))
|
|
||||||
# print(logits)
|
|
||||||
|
|
||||||
# print(predicted_class_ids)
|
|
||||||
|
|
||||||
elif engine == 'ov':
|
elif engine == 'ov':
|
||||||
print("OV inference")
|
print("OV inference")
|
||||||
# Initialize an empty list to store elapsed times
|
|
||||||
elapsed_times = []
|
elapsed_times = []
|
||||||
|
|
||||||
# Loop for batch processing 10 times and calculate the time for every loop
|
|
||||||
for i in range(10):
|
for i in range(10):
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
|
|
||||||
outputs = model(**inputs)
|
outputs = model(**inputs)
|
||||||
logits = outputs.logits
|
logits = outputs.logits
|
||||||
|
|
||||||
# Get the predicted class for each input in the batch
|
|
||||||
predicted_class_ids = logits.argmax(dim=1).tolist()
|
predicted_class_ids = logits.argmax(dim=1).tolist()
|
||||||
|
|
||||||
end_time = time.time()
|
end_time = time.time()
|
||||||
elapsed_time = end_time - start_time
|
elapsed_time = end_time - start_time
|
||||||
|
|
||||||
# Save the elapsed time in the list
|
|
||||||
elapsed_times.append(elapsed_time)
|
elapsed_times.append(elapsed_time)
|
||||||
|
|
||||||
# print(outputs)
|
|
||||||
# print(type(outputs))
|
|
||||||
# print("logits.shape is " + str(logits.shape))
|
|
||||||
# print(logits)
|
|
||||||
|
|
||||||
# print(predictions)
|
|
||||||
#print(predicted_class_ids)
|
|
||||||
|
|
||||||
|
|
||||||
# Skip the first two values and calculate the average of the remaining elapsed times
|
# Skip the first two values and calculate the average of the remaining elapsed times
|
||||||
average_elapsed_time = sum(elapsed_times[2:]) / len(elapsed_times[2:])
|
average_elapsed_time = sum(elapsed_times[2:]) / len(elapsed_times[2:])
|
||||||
classfication_per_second = batch_size/average_elapsed_time
|
classfication_per_second = batch_size/average_elapsed_time
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue