support and optimize qwen2-audio (#11809)
This commit is contained in:
		
							parent
							
								
									3ac83f8396
								
							
						
					
					
						commit
						07b7f13982
					
				
					 2 changed files with 153 additions and 11 deletions
				
			
		| 
						 | 
				
			
			@ -1308,9 +1308,6 @@ def _optimize_post(model, lightweight_bmm=False):
 | 
			
		|||
        from ipex_llm.transformers.models.qwen2 import qwen2_attention_forward
 | 
			
		||||
        from ipex_llm.transformers.models.qwen2 import qwen2_causal_lm_forward
 | 
			
		||||
        from ipex_llm.transformers.models.qwen2 import qwen2_mlp_forward
 | 
			
		||||
        convert_forward(model,
 | 
			
		||||
                        module.Qwen2Model,
 | 
			
		||||
                        qwen2_model_forward)
 | 
			
		||||
        convert_forward(model,
 | 
			
		||||
                        module.Qwen2ForCausalLM,
 | 
			
		||||
                        qwen2_causal_lm_forward)
 | 
			
		||||
| 
						 | 
				
			
			@ -1326,6 +1323,12 @@ def _optimize_post(model, lightweight_bmm=False):
 | 
			
		|||
        convert_forward(model,
 | 
			
		||||
                        module.Qwen2SdpaAttention,
 | 
			
		||||
                        qwen2_attention_forward)
 | 
			
		||||
        if version.parse(trans_version) >= version.parse("4.42"):
 | 
			
		||||
            from ipex_llm.transformers.models.qwen2 import qwen2_model_forward_4_42
 | 
			
		||||
            convert_forward(model, module.Qwen2Model, qwen2_model_forward_4_42)
 | 
			
		||||
        else:
 | 
			
		||||
            from ipex_llm.transformers.models.qwen2 import qwen2_model_forward
 | 
			
		||||
            convert_forward(model, module.Qwen2Model, qwen2_model_forward)
 | 
			
		||||
    elif model.config.model_type == "qwen2_moe":
 | 
			
		||||
        # for Qwen1.5-MOE-A2.7B
 | 
			
		||||
        modeling_module_name = model.__class__.__module__
 | 
			
		||||
| 
						 | 
				
			
			@ -1356,6 +1359,8 @@ def _optimize_post(model, lightweight_bmm=False):
 | 
			
		|||
        convert_forward(model,
 | 
			
		||||
                        module.Qwen2MoeSdpaAttention,
 | 
			
		||||
                        qwen2_attention_forward)
 | 
			
		||||
    elif model.config.model_type == "qwen2_audio":
 | 
			
		||||
        _optimize_post(model.language_model, lightweight_bmm=lightweight_bmm)
 | 
			
		||||
    elif model.config.model_type == "cohere":
 | 
			
		||||
        # for CohereForAI/c4ai-command-r-v01
 | 
			
		||||
        invalidInputError(version.parse(trans_version) >= version.parse("4.40.0"),
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -55,8 +55,6 @@ from ipex_llm.utils.common import invalidInputError
 | 
			
		|||
 | 
			
		||||
from transformers.models.qwen2.modeling_qwen2 import Qwen2Attention, Qwen2MLP
 | 
			
		||||
from transformers.models.qwen2.modeling_qwen2 import apply_rotary_pos_emb, repeat_kv
 | 
			
		||||
from transformers.models.qwen2.modeling_qwen2 import _prepare_4d_causal_attention_mask_for_sdpa
 | 
			
		||||
from transformers.models.qwen2.modeling_qwen2 import _prepare_4d_causal_attention_mask
 | 
			
		||||
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
 | 
			
		||||
from transformers.cache_utils import Cache
 | 
			
		||||
from transformers import logging
 | 
			
		||||
| 
						 | 
				
			
			@ -76,12 +74,15 @@ def qwen2_model_forward(
 | 
			
		|||
    output_attentions: Optional[bool] = None,
 | 
			
		||||
    output_hidden_states: Optional[bool] = None,
 | 
			
		||||
    return_dict: Optional[bool] = None,
 | 
			
		||||
    cache_position: Optional[torch.LongTensor] = None,  # for transformers >= 4.42
 | 
			
		||||
) -> Union[Tuple, BaseModelOutputWithPast]:
 | 
			
		||||
    output_attentions = output_attentions if output_attentions is not None else \
 | 
			
		||||
        self.config.output_attentions
 | 
			
		||||
    output_attentions = (
 | 
			
		||||
        output_attentions if output_attentions is not None
 | 
			
		||||
        else self.config.output_attentions
 | 
			
		||||
    )
 | 
			
		||||
    output_hidden_states = (
 | 
			
		||||
        output_hidden_states if output_hidden_states is not None else
 | 
			
		||||
        self.config.output_hidden_states
 | 
			
		||||
        output_hidden_states if output_hidden_states is not None
 | 
			
		||||
        else self.config.output_hidden_states
 | 
			
		||||
    )
 | 
			
		||||
    use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -90,8 +91,7 @@ def qwen2_model_forward(
 | 
			
		|||
    # retrieve input_ids and inputs_embeds
 | 
			
		||||
    if input_ids is not None and inputs_embeds is not None:
 | 
			
		||||
        invalidInputError(False,
 | 
			
		||||
                          "You cannot specify both decoder_input_ids and "
 | 
			
		||||
                          "decoder_inputs_embeds at the same time")
 | 
			
		||||
                          "You cannot specify both input_ids and inputs_embeds at the same time")
 | 
			
		||||
    elif input_ids is not None:
 | 
			
		||||
        batch_size, seq_length = input_ids.shape
 | 
			
		||||
    elif inputs_embeds is not None:
 | 
			
		||||
| 
						 | 
				
			
			@ -159,6 +159,9 @@ def qwen2_model_forward(
 | 
			
		|||
                "the input. "
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
    from transformers.models.qwen2.modeling_qwen2 import _prepare_4d_causal_attention_mask_for_sdpa
 | 
			
		||||
    from transformers.models.qwen2.modeling_qwen2 import _prepare_4d_causal_attention_mask
 | 
			
		||||
 | 
			
		||||
    # ipex-llm changes start: don't generate `attention_mask` in specific cases
 | 
			
		||||
    if seq_length == 1 or batch_size == 1 and use_sdp_causal(
 | 
			
		||||
        seq_length, seq_length + past_key_values_length,
 | 
			
		||||
| 
						 | 
				
			
			@ -259,6 +262,138 @@ def qwen2_model_forward(
 | 
			
		|||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def qwen2_model_forward_4_42(
 | 
			
		||||
    self,
 | 
			
		||||
    input_ids: torch.LongTensor = None,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    past_key_values: Optional[List[torch.FloatTensor]] = None,
 | 
			
		||||
    inputs_embeds: Optional[torch.FloatTensor] = None,
 | 
			
		||||
    use_cache: Optional[bool] = None,
 | 
			
		||||
    output_attentions: Optional[bool] = None,
 | 
			
		||||
    output_hidden_states: Optional[bool] = None,
 | 
			
		||||
    return_dict: Optional[bool] = None,
 | 
			
		||||
    cache_position: Optional[torch.LongTensor] = None,
 | 
			
		||||
) -> Union[Tuple, BaseModelOutputWithPast]:
 | 
			
		||||
    output_attentions = (
 | 
			
		||||
        output_attentions if output_attentions is not None
 | 
			
		||||
        else self.config.output_attentions
 | 
			
		||||
    )
 | 
			
		||||
    output_hidden_states = (
 | 
			
		||||
        output_hidden_states if output_hidden_states is not None
 | 
			
		||||
        else self.config.output_hidden_states
 | 
			
		||||
    )
 | 
			
		||||
    use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
			
		||||
 | 
			
		||||
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
 | 
			
		||||
 | 
			
		||||
    invalidInputError(
 | 
			
		||||
        (input_ids is None) ^ (inputs_embeds is None),
 | 
			
		||||
        "You cannot specify both input_ids and inputs_embeds at the same time, "
 | 
			
		||||
        "and must specify either one"
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    if self.gradient_checkpointing and self.training:
 | 
			
		||||
        if use_cache:
 | 
			
		||||
            logger.warning_once(
 | 
			
		||||
                "`use_cache=True` is incompatible with gradient checkpointing. "
 | 
			
		||||
                "Setting `use_cache=False`..."
 | 
			
		||||
            )
 | 
			
		||||
            use_cache = False
 | 
			
		||||
 | 
			
		||||
    if inputs_embeds is None:
 | 
			
		||||
        inputs_embeds = self.embed_tokens(input_ids)
 | 
			
		||||
 | 
			
		||||
    # ipex-llm changes start
 | 
			
		||||
    # IPEX-LLM OPT: kv cache and quantize kv cache
 | 
			
		||||
    use_quantize_kv = (
 | 
			
		||||
        self.config.hidden_size != 3584     # disable quantize kv in specific model
 | 
			
		||||
        and use_quantize_kv_cache(self.layers[0].mlp.up_proj, inputs_embeds,
 | 
			
		||||
                                  self.config.num_attention_heads//self.config.num_key_value_heads)
 | 
			
		||||
    )
 | 
			
		||||
    if use_cache:
 | 
			
		||||
        if use_quantize_kv and not isinstance(past_key_values, DynamicFp8Cache):
 | 
			
		||||
            past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
 | 
			
		||||
        elif not use_quantize_kv and not isinstance(past_key_values, DynamicNormalCache):
 | 
			
		||||
            past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
 | 
			
		||||
    # ipex-llm changes end
 | 
			
		||||
 | 
			
		||||
    if cache_position is None:
 | 
			
		||||
        past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
 | 
			
		||||
        cache_position = torch.arange(
 | 
			
		||||
            past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
 | 
			
		||||
        )
 | 
			
		||||
    if position_ids is None:
 | 
			
		||||
        position_ids = cache_position.unsqueeze(0)
 | 
			
		||||
 | 
			
		||||
    causal_mask = self._update_causal_mask(
 | 
			
		||||
        attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    hidden_states = inputs_embeds
 | 
			
		||||
 | 
			
		||||
    # decoder layers
 | 
			
		||||
    all_hidden_states = () if output_hidden_states else None
 | 
			
		||||
    all_self_attns = () if output_attentions else None
 | 
			
		||||
    next_decoder_cache = None
 | 
			
		||||
 | 
			
		||||
    for decoder_layer in self.layers:
 | 
			
		||||
        if output_hidden_states:
 | 
			
		||||
            all_hidden_states += (hidden_states,)
 | 
			
		||||
 | 
			
		||||
        if self.gradient_checkpointing and self.training:
 | 
			
		||||
            layer_outputs = self._gradient_checkpointing_func(
 | 
			
		||||
                decoder_layer.__call__,
 | 
			
		||||
                hidden_states,
 | 
			
		||||
                causal_mask,
 | 
			
		||||
                position_ids,
 | 
			
		||||
                past_key_values,
 | 
			
		||||
                output_attentions,
 | 
			
		||||
                use_cache,
 | 
			
		||||
                cache_position,
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            layer_outputs = decoder_layer(
 | 
			
		||||
                hidden_states,
 | 
			
		||||
                attention_mask=causal_mask,
 | 
			
		||||
                position_ids=position_ids,
 | 
			
		||||
                past_key_value=past_key_values,
 | 
			
		||||
                output_attentions=output_attentions,
 | 
			
		||||
                use_cache=use_cache,
 | 
			
		||||
                cache_position=cache_position,
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        hidden_states = layer_outputs[0]
 | 
			
		||||
 | 
			
		||||
        if use_cache:
 | 
			
		||||
            next_decoder_cache = layer_outputs[2 if output_attentions else 1]
 | 
			
		||||
 | 
			
		||||
        if output_attentions:
 | 
			
		||||
            all_self_attns += (layer_outputs[1],)
 | 
			
		||||
 | 
			
		||||
    hidden_states = self.norm(hidden_states)
 | 
			
		||||
 | 
			
		||||
    # add hidden states from the last decoder layer
 | 
			
		||||
    if output_hidden_states:
 | 
			
		||||
        all_hidden_states += (hidden_states,)
 | 
			
		||||
 | 
			
		||||
    # ipex-llm changes start: remove `to_legacy_cache`
 | 
			
		||||
    next_cache = None
 | 
			
		||||
    if use_cache:
 | 
			
		||||
        next_cache = next_decoder_cache
 | 
			
		||||
    # ipex-llm changes end
 | 
			
		||||
 | 
			
		||||
    if not return_dict:
 | 
			
		||||
        return tuple(v for v in [hidden_states, next_cache,
 | 
			
		||||
                                 all_hidden_states, all_self_attns] if v is not None)
 | 
			
		||||
    return BaseModelOutputWithPast(
 | 
			
		||||
        last_hidden_state=hidden_states,
 | 
			
		||||
        past_key_values=next_cache,
 | 
			
		||||
        hidden_states=all_hidden_states,
 | 
			
		||||
        attentions=all_self_attns,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def qwen2_causal_lm_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    input_ids: torch.LongTensor = None,
 | 
			
		||||
| 
						 | 
				
			
			@ -271,6 +406,7 @@ def qwen2_causal_lm_forward(
 | 
			
		|||
    output_attentions: Optional[bool] = None,
 | 
			
		||||
    output_hidden_states: Optional[bool] = None,
 | 
			
		||||
    return_dict: Optional[bool] = None,
 | 
			
		||||
    cache_position: Optional[torch.LongTensor] = None,  # for transformers >= 4.42
 | 
			
		||||
) -> Union[Tuple, CausalLMOutputWithPast]:
 | 
			
		||||
    output_attentions = (
 | 
			
		||||
        output_attentions if output_attentions is not None
 | 
			
		||||
| 
						 | 
				
			
			@ -293,6 +429,7 @@ def qwen2_causal_lm_forward(
 | 
			
		|||
        output_attentions=output_attentions,
 | 
			
		||||
        output_hidden_states=output_hidden_states,
 | 
			
		||||
        return_dict=return_dict,
 | 
			
		||||
        cache_position=cache_position,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    hidden_states = outputs[0]
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue