[LLM] Optimize kv_cache for mistral model family (#9189)
* add kv_cache optimization for mistral model * kv_cache optimize for mistral * update stylr * update
This commit is contained in:
		
							parent
							
								
									3555ebc148
								
							
						
					
					
						commit
						0765f94770
					
				
					 2 changed files with 34 additions and 3 deletions
				
			
		| 
						 | 
				
			
			@ -41,10 +41,14 @@ from typing import Optional, Tuple
 | 
			
		|||
import torch
 | 
			
		||||
from torch import nn
 | 
			
		||||
from bigdl.llm.utils.common import invalidInputError
 | 
			
		||||
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
 | 
			
		||||
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb,\
 | 
			
		||||
    apply_rotary_pos_emb_no_cache_xpu
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
 | 
			
		||||
    """
 | 
			
		||||
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep).
 | 
			
		||||
| 
						 | 
				
			
			@ -70,6 +74,7 @@ def mistral_attention_forward(
 | 
			
		|||
    padding_mask: Optional[torch.Tensor]=None,
 | 
			
		||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
			
		||||
    bsz, q_len, _ = hidden_states.size()
 | 
			
		||||
    device = hidden_states.device
 | 
			
		||||
 | 
			
		||||
    query_states = self.q_proj(hidden_states)
 | 
			
		||||
    key_states = self.k_proj(hidden_states)
 | 
			
		||||
| 
						 | 
				
			
			@ -84,6 +89,7 @@ def mistral_attention_forward(
 | 
			
		|||
    kv_seq_len = key_states.shape[-2]
 | 
			
		||||
    if past_key_value is not None:
 | 
			
		||||
        kv_seq_len += past_key_value[0].shape[-2]
 | 
			
		||||
 | 
			
		||||
    if query_states.device.type == "xpu" and not (self.training and query_states.requires_grad):
 | 
			
		||||
        query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
 | 
			
		||||
                                                                     key_states,
 | 
			
		||||
| 
						 | 
				
			
			@ -96,8 +102,33 @@ def mistral_attention_forward(
 | 
			
		|||
 | 
			
		||||
    if past_key_value is not None:
 | 
			
		||||
        # reuse k, v, self_attention
 | 
			
		||||
        key_states = torch.cat([past_key_value[0], key_states], dim=2)
 | 
			
		||||
        value_states = torch.cat([past_key_value[1], value_states], dim=2)
 | 
			
		||||
        cache_k = past_key_value[0]
 | 
			
		||||
        cache_v = past_key_value[1]
 | 
			
		||||
        if cache_k.stride()[1] <= cache_k.size(2) * cache_k.size(3):
 | 
			
		||||
            # allocate new
 | 
			
		||||
            new_cache_k, new_cache_v = extend_kv_cache(bsz,
 | 
			
		||||
                                                       self.num_key_value_heads,  # Support GQA
 | 
			
		||||
                                                       self.head_dim,
 | 
			
		||||
                                                       cache_k.size(2),
 | 
			
		||||
                                                       kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
 | 
			
		||||
                                                       dtype=cache_k.dtype,
 | 
			
		||||
                                                       device=device)
 | 
			
		||||
 | 
			
		||||
        key_states, value_states = append_kv_cache(cache_k, cache_v, key_states, value_states)
 | 
			
		||||
 | 
			
		||||
    elif use_cache:
 | 
			
		||||
        max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
 | 
			
		||||
        new_key_states, new_value_states = init_kv_cache(bsz,
 | 
			
		||||
                                                         self.num_key_value_heads,
 | 
			
		||||
                                                         self.head_dim,
 | 
			
		||||
                                                         kv_seq_len,
 | 
			
		||||
                                                         max_cache_length,
 | 
			
		||||
                                                         dtype=key_states.dtype,
 | 
			
		||||
                                                         device=device)
 | 
			
		||||
        new_key_states[:] = key_states
 | 
			
		||||
        new_value_states[:] = value_states
 | 
			
		||||
        key_states = new_key_states
 | 
			
		||||
        value_states = new_value_states
 | 
			
		||||
 | 
			
		||||
    past_key_value = (key_states, value_states) if use_cache else None
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -71,7 +71,7 @@ def rotate_every_two(x):
 | 
			
		|||
 | 
			
		||||
 | 
			
		||||
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, model_family):
 | 
			
		||||
    if model_family in ["llama", "baichuan", "internlm", "aquila", "gpt_neox"]:
 | 
			
		||||
    if model_family in ["llama", "baichuan", "internlm", "aquila", "gpt_neox", "mistral"]:
 | 
			
		||||
        # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
 | 
			
		||||
        cos = cos.squeeze(1).squeeze(0)  # [seq_len, dim]
 | 
			
		||||
        sin = sin.squeeze(1).squeeze(0)  # [seq_len, dim]
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue