[LLM] Optimize kv_cache for mistral model family (#9189)
* add kv_cache optimization for mistral model * kv_cache optimize for mistral * update stylr * update
This commit is contained in:
parent
3555ebc148
commit
0765f94770
2 changed files with 34 additions and 3 deletions
|
|
@ -41,10 +41,14 @@ from typing import Optional, Tuple
|
||||||
import torch
|
import torch
|
||||||
from torch import nn
|
from torch import nn
|
||||||
from bigdl.llm.utils.common import invalidInputError
|
from bigdl.llm.utils.common import invalidInputError
|
||||||
|
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
|
||||||
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb,\
|
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb,\
|
||||||
apply_rotary_pos_emb_no_cache_xpu
|
apply_rotary_pos_emb_no_cache_xpu
|
||||||
|
|
||||||
|
|
||||||
|
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
|
||||||
|
|
||||||
|
|
||||||
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
||||||
"""
|
"""
|
||||||
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep).
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep).
|
||||||
|
|
@ -70,6 +74,7 @@ def mistral_attention_forward(
|
||||||
padding_mask: Optional[torch.Tensor]=None,
|
padding_mask: Optional[torch.Tensor]=None,
|
||||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||||
bsz, q_len, _ = hidden_states.size()
|
bsz, q_len, _ = hidden_states.size()
|
||||||
|
device = hidden_states.device
|
||||||
|
|
||||||
query_states = self.q_proj(hidden_states)
|
query_states = self.q_proj(hidden_states)
|
||||||
key_states = self.k_proj(hidden_states)
|
key_states = self.k_proj(hidden_states)
|
||||||
|
|
@ -84,6 +89,7 @@ def mistral_attention_forward(
|
||||||
kv_seq_len = key_states.shape[-2]
|
kv_seq_len = key_states.shape[-2]
|
||||||
if past_key_value is not None:
|
if past_key_value is not None:
|
||||||
kv_seq_len += past_key_value[0].shape[-2]
|
kv_seq_len += past_key_value[0].shape[-2]
|
||||||
|
|
||||||
if query_states.device.type == "xpu" and not (self.training and query_states.requires_grad):
|
if query_states.device.type == "xpu" and not (self.training and query_states.requires_grad):
|
||||||
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
|
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
|
||||||
key_states,
|
key_states,
|
||||||
|
|
@ -96,8 +102,33 @@ def mistral_attention_forward(
|
||||||
|
|
||||||
if past_key_value is not None:
|
if past_key_value is not None:
|
||||||
# reuse k, v, self_attention
|
# reuse k, v, self_attention
|
||||||
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
cache_k = past_key_value[0]
|
||||||
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
cache_v = past_key_value[1]
|
||||||
|
if cache_k.stride()[1] <= cache_k.size(2) * cache_k.size(3):
|
||||||
|
# allocate new
|
||||||
|
new_cache_k, new_cache_v = extend_kv_cache(bsz,
|
||||||
|
self.num_key_value_heads, # Support GQA
|
||||||
|
self.head_dim,
|
||||||
|
cache_k.size(2),
|
||||||
|
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
|
||||||
|
dtype=cache_k.dtype,
|
||||||
|
device=device)
|
||||||
|
|
||||||
|
key_states, value_states = append_kv_cache(cache_k, cache_v, key_states, value_states)
|
||||||
|
|
||||||
|
elif use_cache:
|
||||||
|
max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
|
||||||
|
new_key_states, new_value_states = init_kv_cache(bsz,
|
||||||
|
self.num_key_value_heads,
|
||||||
|
self.head_dim,
|
||||||
|
kv_seq_len,
|
||||||
|
max_cache_length,
|
||||||
|
dtype=key_states.dtype,
|
||||||
|
device=device)
|
||||||
|
new_key_states[:] = key_states
|
||||||
|
new_value_states[:] = value_states
|
||||||
|
key_states = new_key_states
|
||||||
|
value_states = new_value_states
|
||||||
|
|
||||||
past_key_value = (key_states, value_states) if use_cache else None
|
past_key_value = (key_states, value_states) if use_cache else None
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -71,7 +71,7 @@ def rotate_every_two(x):
|
||||||
|
|
||||||
|
|
||||||
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, model_family):
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, model_family):
|
||||||
if model_family in ["llama", "baichuan", "internlm", "aquila", "gpt_neox"]:
|
if model_family in ["llama", "baichuan", "internlm", "aquila", "gpt_neox", "mistral"]:
|
||||||
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
||||||
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
||||||
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue