parent
019da6c0ab
commit
06745e5742
5 changed files with 80 additions and 2 deletions
|
|
@ -57,6 +57,7 @@ test_api:
|
|||
# - "bigdl_ipex_int8" # on Intel CPU, (qtype=int8)
|
||||
# - "speculative_cpu" # on Intel CPU, inference with self-speculative decoding
|
||||
# - "deepspeed_transformer_int4_cpu" # on Intel CPU, deepspeed autotp inference
|
||||
# - "transformers_int4_npu_win" # on Intel NPU for Windows, transformer-like API, (qtype=int4)
|
||||
cpu_embedding: False # whether put embedding to CPU
|
||||
streaming: False # whether output in streaming way (only available now for gpu win related test_api)
|
||||
use_fp16_torch_dtype: True # whether use fp16 for non-linear layer (only available now for "pipeline_parallel_gpu" test_api)
|
||||
|
|
|
|||
|
|
@ -33,6 +33,7 @@ test_api:
|
|||
# - "bigdl_ipex_int8" # on Intel CPU, (qtype=int8)
|
||||
# - "speculative_cpu" # on Intel CPU, inference with self-speculative decoding
|
||||
# - "deepspeed_transformer_int4_cpu" # on Intel CPU, deepspeed autotp inference
|
||||
# - "transformers_int4_npu_win" # on Intel NPU for Windows, transformer-like API, (qtype=int4)
|
||||
cpu_embedding: False # whether put embedding to CPU
|
||||
streaming: False # whether output in streaming way (only available now for gpu win related test_api)
|
||||
use_fp16_torch_dtype: True # whether use fp16 for non-linear layer (only available now for "pipeline_parallel_gpu" test_api)
|
||||
|
|
|
|||
|
|
@ -161,6 +161,8 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
|
|||
result = run_speculative_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
|
||||
elif test_api == 'pipeline_parallel_gpu':
|
||||
result = run_pipeline_parallel_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, cpu_embedding, fp16=use_fp16_torch_dtype)
|
||||
elif test_api == 'transformers_int4_npu_win':
|
||||
result = transformers_int4_npu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size)
|
||||
else:
|
||||
invalidInputError(False, "Unknown test_api " + test_api + ", please check your config.yaml.")
|
||||
|
||||
|
|
@ -567,6 +569,78 @@ def run_transformer_int4_gpu(repo_id,
|
|||
gc.collect()
|
||||
return result
|
||||
|
||||
|
||||
def transformers_int4_npu_win(repo_id,
|
||||
local_model_hub,
|
||||
in_out_pairs,
|
||||
warm_up,
|
||||
num_trials,
|
||||
num_beams,
|
||||
low_bit,
|
||||
batch_size):
|
||||
from ipex_llm.transformers.npu_model import AutoModel, AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer, LlamaTokenizer
|
||||
|
||||
model_path = get_model_path(repo_id, local_model_hub)
|
||||
# Load model in 4 bit,
|
||||
# which convert the relevant layers in the model into INT4 format
|
||||
st = time.perf_counter()
|
||||
if repo_id in CHATGLM_IDS:
|
||||
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True, torch_dtype='auto').eval()
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
elif repo_id in LLAMA_IDS:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
|
||||
use_cache=True).eval()
|
||||
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
|
||||
use_cache=True).eval()
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
end = time.perf_counter()
|
||||
load_time = end - st
|
||||
print(">> loading of model costs {}s".format(load_time))
|
||||
|
||||
model = BenchmarkWrapper(model)
|
||||
|
||||
result = {}
|
||||
with torch.inference_mode():
|
||||
for in_out in in_out_pairs:
|
||||
in_out_len = in_out.split("-")
|
||||
in_len = int(in_out_len[0])
|
||||
out_len = int(in_out_len[1])
|
||||
# As different tokenizer has different encodings,
|
||||
# in_len.txt maybe shorter than we need,
|
||||
# use much longer context to make sure input length
|
||||
test_length = min(in_len*2, 8192)
|
||||
while test_length not in [32, 256, 1024, 2048, 8192]:
|
||||
test_length = test_length * 2
|
||||
input_str = open(f"prompt/continuation/{test_length}.txt", 'r').read()
|
||||
# As different tokenizer has different encodings,
|
||||
# slice the input_ids to ensure the prompt length is required length.
|
||||
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
||||
input_ids = input_ids[:, :in_len]
|
||||
true_str = tokenizer.batch_decode(input_ids)[0]
|
||||
input_list = [true_str] * batch_size
|
||||
input_ids = tokenizer(input_list, return_tensors="pt").input_ids
|
||||
actual_in_len = input_ids.shape[1]
|
||||
result[in_out] = []
|
||||
for i in range(num_trials + warm_up):
|
||||
st = time.perf_counter()
|
||||
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
||||
min_new_tokens=out_len, num_beams=num_beams)
|
||||
end = time.perf_counter()
|
||||
print("model generate cost: " + str(end - st))
|
||||
output = tokenizer.batch_decode(output_ids)
|
||||
print(output[0])
|
||||
actual_out_len = output_ids.shape[1] - actual_in_len
|
||||
if i >= warm_up:
|
||||
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
|
||||
actual_in_len, actual_out_len, load_time])
|
||||
del model
|
||||
gc.collect()
|
||||
return result
|
||||
|
||||
|
||||
def run_optimize_model_gpu(repo_id,
|
||||
local_model_hub,
|
||||
in_out_pairs,
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
# Run Large Language Model on Intel NPU
|
||||
In this directory, you will find examples on how you could apply IPEX-LLM INT4 or INT8 optimizations on LLM models on [Intel NPUs](../../../README.md). In this directory, you will find examples on how you could apply IPEX-LLM INT4 or INT8 optimizations on LLM models on Intel NPUs. See the table blow for verified models.
|
||||
In this directory, you will find examples on how you could apply IPEX-LLM INT4 or INT8 optimizations on LLM models on [Intel NPUs](../../../README.md). See the table blow for verified models.
|
||||
|
||||
## Verified Models
|
||||
|
||||
|
|
@ -8,12 +8,14 @@ In this directory, you will find examples on how you could apply IPEX-LLM INT4 o
|
|||
| Llama2 | [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) |
|
||||
| Llama3 | [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) |
|
||||
| Chatglm3 | [THUDM/chatglm3-6b](https://huggingface.co/THUDM/chatglm3-6b) |
|
||||
| Chatglm2 | [THUDM/chatglm2-6b](https://huggingface.co/THUDM/chatglm2-6b) |
|
||||
| Qwen2 | [Qwen/Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) |
|
||||
| MiniCPM | [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) |
|
||||
| Phi-3 | [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) |
|
||||
| Stablelm | [stabilityai/stablelm-zephyr-3b](https://huggingface.co/stabilityai/stablelm-zephyr-3b) |
|
||||
| Baichuan2 | [baichuan-inc/Baichuan2-7B-Chat](https://huggingface.co/baichuan-inc/Baichuan-7B-Chat) |
|
||||
| Deepseek | [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct) |
|
||||
| Mistral | [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) |
|
||||
|
||||
## 0. Requirements
|
||||
To run these examples with IPEX-LLM on Intel NPUs, make sure to install the newest driver version of Intel NPU.
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
# Run Large Multimodal Model on Intel NPU
|
||||
In this directory, you will find examples on how you could apply IPEX-LLM INT4 or INT8 optimizations on Large Multimodal Models on [Intel NPUs](../../../README.md). In this directory, you will find examples on how you could apply IPEX-LLM INT4 or INT8 optimizations on Large Multimodal Models on Intel NPUs. See the table blow for verified models.
|
||||
In this directory, you will find examples on how you could apply IPEX-LLM INT4 or INT8 optimizations on Large Multimodal Models on [Intel NPUs](../../../README.md). See the table blow for verified models.
|
||||
|
||||
## Verified Models
|
||||
|
||||
|
|
|
|||
Loading…
Reference in a new issue