parent
							
								
									019da6c0ab
								
							
						
					
					
						commit
						06745e5742
					
				
					 5 changed files with 80 additions and 2 deletions
				
			
		| 
						 | 
				
			
			@ -57,6 +57,7 @@ test_api:
 | 
			
		|||
  # - "bigdl_ipex_int8"                     # on Intel CPU, (qtype=int8)
 | 
			
		||||
  # - "speculative_cpu"                     # on Intel CPU, inference with self-speculative decoding
 | 
			
		||||
  # - "deepspeed_transformer_int4_cpu"      # on Intel CPU, deepspeed autotp inference
 | 
			
		||||
  # - "transformers_int4_npu_win"           # on Intel NPU for Windows,  transformer-like API, (qtype=int4)
 | 
			
		||||
cpu_embedding: False # whether put embedding to CPU
 | 
			
		||||
streaming: False # whether output in streaming way (only available now for gpu win related test_api)
 | 
			
		||||
use_fp16_torch_dtype: True # whether use fp16 for non-linear layer (only available now for "pipeline_parallel_gpu" test_api)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -33,6 +33,7 @@ test_api:
 | 
			
		|||
  # - "bigdl_ipex_int8"                     # on Intel CPU, (qtype=int8)
 | 
			
		||||
  # - "speculative_cpu"                     # on Intel CPU, inference with self-speculative decoding
 | 
			
		||||
  # - "deepspeed_transformer_int4_cpu"      # on Intel CPU, deepspeed autotp inference
 | 
			
		||||
  # - "transformers_int4_npu_win"           # on Intel NPU for Windows,  transformer-like API, (qtype=int4)
 | 
			
		||||
cpu_embedding: False # whether put embedding to CPU
 | 
			
		||||
streaming: False # whether output in streaming way (only available now for gpu win related test_api)
 | 
			
		||||
use_fp16_torch_dtype: True # whether use fp16 for non-linear layer (only available now for "pipeline_parallel_gpu" test_api)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -161,6 +161,8 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
 | 
			
		|||
        result = run_speculative_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
 | 
			
		||||
    elif test_api == 'pipeline_parallel_gpu':
 | 
			
		||||
        result = run_pipeline_parallel_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, cpu_embedding, fp16=use_fp16_torch_dtype)
 | 
			
		||||
    elif test_api == 'transformers_int4_npu_win':
 | 
			
		||||
        result = transformers_int4_npu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size)
 | 
			
		||||
    else:
 | 
			
		||||
        invalidInputError(False, "Unknown test_api " + test_api + ", please check your config.yaml.")
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -567,6 +569,78 @@ def run_transformer_int4_gpu(repo_id,
 | 
			
		|||
    gc.collect()
 | 
			
		||||
    return result
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def transformers_int4_npu_win(repo_id,
 | 
			
		||||
                                 local_model_hub,
 | 
			
		||||
                                 in_out_pairs,
 | 
			
		||||
                                 warm_up,
 | 
			
		||||
                                 num_trials,
 | 
			
		||||
                                 num_beams,
 | 
			
		||||
                                 low_bit,
 | 
			
		||||
                                 batch_size):
 | 
			
		||||
    from ipex_llm.transformers.npu_model import AutoModel, AutoModelForCausalLM
 | 
			
		||||
    from transformers import AutoTokenizer, LlamaTokenizer
 | 
			
		||||
 | 
			
		||||
    model_path = get_model_path(repo_id, local_model_hub)
 | 
			
		||||
    # Load model in 4 bit,
 | 
			
		||||
    # which convert the relevant layers in the model into INT4 format
 | 
			
		||||
    st = time.perf_counter()
 | 
			
		||||
    if repo_id in CHATGLM_IDS:
 | 
			
		||||
        model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True, torch_dtype='auto').eval()
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    elif repo_id in LLAMA_IDS:
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
 | 
			
		||||
                                                     use_cache=True).eval()
 | 
			
		||||
        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    else:
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
 | 
			
		||||
                                                     use_cache=True).eval()
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    end = time.perf_counter()
 | 
			
		||||
    load_time = end - st
 | 
			
		||||
    print(">> loading of model costs {}s".format(load_time))
 | 
			
		||||
 | 
			
		||||
    model = BenchmarkWrapper(model)
 | 
			
		||||
 | 
			
		||||
    result = {}
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        for in_out in in_out_pairs:
 | 
			
		||||
            in_out_len = in_out.split("-")
 | 
			
		||||
            in_len = int(in_out_len[0])
 | 
			
		||||
            out_len = int(in_out_len[1])
 | 
			
		||||
            # As different tokenizer has different encodings,
 | 
			
		||||
            # in_len.txt maybe shorter than we need,
 | 
			
		||||
            # use much longer context to make sure input length
 | 
			
		||||
            test_length = min(in_len*2, 8192)
 | 
			
		||||
            while test_length not in [32, 256, 1024, 2048, 8192]:
 | 
			
		||||
                test_length = test_length * 2
 | 
			
		||||
            input_str = open(f"prompt/continuation/{test_length}.txt", 'r').read()
 | 
			
		||||
            # As different tokenizer has different encodings,
 | 
			
		||||
            # slice the input_ids to ensure the prompt length is required length.
 | 
			
		||||
            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
			
		||||
            input_ids = input_ids[:, :in_len]
 | 
			
		||||
            true_str = tokenizer.batch_decode(input_ids)[0]
 | 
			
		||||
            input_list = [true_str] * batch_size
 | 
			
		||||
            input_ids = tokenizer(input_list, return_tensors="pt").input_ids
 | 
			
		||||
            actual_in_len = input_ids.shape[1]
 | 
			
		||||
            result[in_out] = []
 | 
			
		||||
            for i in range(num_trials + warm_up):
 | 
			
		||||
                st = time.perf_counter()
 | 
			
		||||
                output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
			
		||||
                                            min_new_tokens=out_len, num_beams=num_beams)
 | 
			
		||||
                end = time.perf_counter()
 | 
			
		||||
                print("model generate cost: " + str(end - st))
 | 
			
		||||
                output = tokenizer.batch_decode(output_ids)
 | 
			
		||||
                print(output[0])
 | 
			
		||||
                actual_out_len = output_ids.shape[1] - actual_in_len
 | 
			
		||||
                if i >= warm_up:
 | 
			
		||||
                    result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
 | 
			
		||||
                                           actual_in_len, actual_out_len, load_time])
 | 
			
		||||
    del model
 | 
			
		||||
    gc.collect()
 | 
			
		||||
    return result
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def run_optimize_model_gpu(repo_id,
 | 
			
		||||
                           local_model_hub,
 | 
			
		||||
                           in_out_pairs,
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,5 +1,5 @@
 | 
			
		|||
# Run Large Language Model on Intel NPU
 | 
			
		||||
In this directory, you will find examples on how you could apply IPEX-LLM INT4 or INT8 optimizations on LLM models on [Intel NPUs](../../../README.md). In this directory, you will find examples on how you could apply IPEX-LLM INT4 or INT8 optimizations on LLM models on Intel NPUs. See the table blow for verified models.
 | 
			
		||||
In this directory, you will find examples on how you could apply IPEX-LLM INT4 or INT8 optimizations on LLM models on [Intel NPUs](../../../README.md). See the table blow for verified models.
 | 
			
		||||
 | 
			
		||||
## Verified Models
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -8,12 +8,14 @@ In this directory, you will find examples on how you could apply IPEX-LLM INT4 o
 | 
			
		|||
| Llama2 | [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) |
 | 
			
		||||
| Llama3 | [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) |
 | 
			
		||||
| Chatglm3 | [THUDM/chatglm3-6b](https://huggingface.co/THUDM/chatglm3-6b) |
 | 
			
		||||
| Chatglm2 | [THUDM/chatglm2-6b](https://huggingface.co/THUDM/chatglm2-6b) |
 | 
			
		||||
| Qwen2 | [Qwen/Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) |
 | 
			
		||||
| MiniCPM | [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) |
 | 
			
		||||
| Phi-3 | [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) |
 | 
			
		||||
| Stablelm | [stabilityai/stablelm-zephyr-3b](https://huggingface.co/stabilityai/stablelm-zephyr-3b) |
 | 
			
		||||
| Baichuan2 | [baichuan-inc/Baichuan2-7B-Chat](https://huggingface.co/baichuan-inc/Baichuan-7B-Chat) |
 | 
			
		||||
| Deepseek | [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct) |
 | 
			
		||||
| Mistral | [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) |
 | 
			
		||||
 | 
			
		||||
## 0. Requirements
 | 
			
		||||
To run these examples with IPEX-LLM on Intel NPUs, make sure to install the newest driver version of Intel NPU.
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,5 +1,5 @@
 | 
			
		|||
# Run Large Multimodal Model on Intel NPU
 | 
			
		||||
In this directory, you will find examples on how you could apply IPEX-LLM INT4 or INT8 optimizations on Large Multimodal Models on [Intel NPUs](../../../README.md). In this directory, you will find examples on how you could apply IPEX-LLM INT4 or INT8 optimizations on Large Multimodal Models on Intel NPUs. See the table blow for verified models.
 | 
			
		||||
In this directory, you will find examples on how you could apply IPEX-LLM INT4 or INT8 optimizations on Large Multimodal Models on [Intel NPUs](../../../README.md). See the table blow for verified models.
 | 
			
		||||
 | 
			
		||||
## Verified Models
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue