LLM: add qwen example on arc (#8757)

This commit is contained in:
binbin Deng 2023-08-16 17:11:08 +08:00 committed by GitHub
parent f4164e4492
commit 06609d9260
2 changed files with 134 additions and 0 deletions

View file

@ -0,0 +1,59 @@
# Qwen
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Qwen models on any Intel® Arc™ A-Series Graphics. For illustration purposes, we utilize the [Qwen-7B-Chat](https://huggingface.co/Qwen/Qwen-7B-Chat) as a reference Qwen model.
## 0. Requirements
To run these examples with BigDL-LLM on Intel® Arc™ A-Series Graphics, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a Qwen model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel® Arc™ A-Series Graphics.
### 1. Install
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.9
conda activate llm
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
# you can install specific ipex/torch version for your need
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
pip install tiktoken einops transformers_stream_generator # additional package required for Qwen-7B-Chat to conduct generation
```
### 2. Configures OneAPI environment variables
```bash
source /opt/intel/oneapi/setvars.sh
```
### 3. Run
For optimal performance on Arc, it is recommended to set several environment variables.
```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
```
```
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Qwen model (e.g `Qwen/Qwen-7B-Chat`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'Qwen/Qwen-7B-Chat'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
#### Sample Output
#### [Qwen/Qwen-7B-Chat](https://huggingface.co/Qwen/Qwen-7B-Chat)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
<human>AI是什么 <bot>
-------------------- Output --------------------
<human>AI是什么 <bot>AI即人工智能是指计算机科学的一个分支它企图创造能够完成任务的智能机器这些任务通常需要人类智能才能完成。
```
```log
Inference time: xxxx s
-------------------- Prompt --------------------
<human>What is AI? <bot>
-------------------- Output --------------------
<human>What is AI? <bot>AI, or artificial intelligence, refers to the ability of a machine or computer program to perform tasks that typically require human intelligence, such as visual perception, speech recognition
```

View file

@ -0,0 +1,75 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
from bigdl.llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
import intel_extension_for_pytorch as ipex
# you could tune the prompt based on your own model
QWEN_PROMPT_FORMAT = "<human>{prompt} <bot>"
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Qwen model')
parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen-7B-Chat",
help='The huggingface repo id for the Qwen model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="AI是什么",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=False,
trust_remote_code=True)
model = model.half().to('xpu')
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
# Generate predicted tokens
with torch.inference_mode():
prompt = QWEN_PROMPT_FORMAT.format(prompt=args.prompt)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
st = time.time()
# if your selected model is capable of utilizing previous key/value attentions
# to enhance decoding speed, but has `"use_cache": false` in its model config,
# it is important to set `use_cache=True` explicitly in the `generate` function
# to obtain optimal performance with BigDL-LLM INT4 optimizations
# if your selected model has `"do_sample": true` in its generation config,
# it is important to set `do_sample=False` explicitly in the `generate` function
# to obtain optimal performance with BigDL-LLM INT4 optimizations
output = model.generate(input_ids,
do_sample=False,
max_new_tokens=args.n_predict)
torch.xpu.synchronize()
end = time.time()
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(output_str)