LLM: add int4+fp16 benchmark script for windows benchmarking (#10449)

* LLM: add fp16 for benchmark script

* remove transformer_int4_fp16_loadlowbit_gpu_win
This commit is contained in:
Jin Qiao 2024-03-19 11:11:25 +08:00 committed by GitHub
parent bbd749dceb
commit 0451103a43
3 changed files with 110 additions and 0 deletions

View file

@ -48,6 +48,7 @@ test_api:
# - "optimize_model_gpu" # on Intel GPU
# - "deepspeed_transformer_int4_cpu" # on Intel SPR Server
# - "transformer_int4_gpu_win" # on Intel GPU for Windows
# - "transformer_int4_fp16_gpu_win" # on Intel GPU for Windows, use fp16 for non-linear layer
# - "transformer_int4_loadlowbit_gpu_win" # on Intel GPU for Windows using load_low_bit API. Please make sure you have used the save.py to save the converted low bit model
cpu_embedding: False # whether put embedding to CPU (only avaiable now for gpu win related test_api)
streaming: False # whether output in streaming way (only avaiable now for gpu win related test_api)

View file

@ -26,6 +26,7 @@ test_api:
# - "optimize_model_gpu" # on Intel GPU
# - "deepspeed_transformer_int4_cpu" # on Intel SPR Server
# - "transformer_int4_gpu_win" # on Intel GPU for Windows
# - "transformer_int4_fp16_gpu_win" # on Intel GPU for Windows, use fp16 for non-linear layer
# - "transformer_int4_loadlowbit_gpu_win" # on Intel GPU for Windows using load_low_bit API. Please make sure you have used the save.py to save the converted low bit model
# - "deepspeed_optimize_model_gpu" # deepspeed autotp on Intel GPU
cpu_embedding: False # whether put embedding to CPU (only avaiable now for gpu win related test_api)

View file

@ -86,6 +86,8 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
result = run_deepspeed_transformer_int4_cpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size)
elif test_api == 'transformer_int4_gpu_win':
result = run_transformer_int4_gpu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, cpu_embedding, batch_size, streaming)
elif test_api == 'transformer_int4_fp16_gpu_win':
result = run_transformer_int4_fp16_gpu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, cpu_embedding, batch_size, streaming)
elif test_api == 'transformer_int4_loadlowbit_gpu_win':
# drop the results of the first time for better performance
run_transformer_int4_loadlowbit_gpu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, cpu_embedding, batch_size, streaming)
@ -910,6 +912,112 @@ def run_transformer_int4_gpu_win(repo_id,
return result
def run_transformer_int4_fp16_gpu_win(repo_id,
local_model_hub,
in_out_pairs,
warm_up,
num_trials,
num_beams,
low_bit,
cpu_embedding,
batch_size,
streaming):
from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer, TextStreamer
import intel_extension_for_pytorch as ipex
model_path = get_model_path(repo_id, local_model_hub)
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
st = time.perf_counter()
if repo_id in CHATGLM_IDS:
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True, torch_dtype=torch.float16,
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = model.to('xpu')
elif repo_id in LLAMA_IDS:
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True, torch_dtype=torch.float16,
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = model.to('xpu')
elif repo_id in LLAVA_IDS:
llava_repo_dir = os.environ.get('LLAVA_REPO_DIR')
sys.path.append(rf"{llava_repo_dir}")
from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True, torch_dtype=torch.float16,
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = model.to('xpu')
else:
model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit, torch_dtype=torch.float16,
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = model.to('xpu')
if isinstance(model, GPTJForCausalLM):
# For gpt-j model family, this optimization can provide a better performance.
model = ipex.optimize(model.eval(), inplace=True)
end = time.perf_counter()
load_time = end - st
print(">> loading of model costs {}s and {}GB".format(load_time, torch.xpu.memory.memory_reserved()/(1024**3)))
model = BenchmarkWrapper(model)
streamer = TextStreamer(tokenizer, skip_prompt=True)
result = {}
with torch.inference_mode():
for in_out in in_out_pairs:
try:
in_out_len = in_out.split("-")
in_len = int(in_out_len[0])
out_len = int(in_out_len[1])
# As different tokenizer has different encodings,
# in_len.txt maybe shorter than we need,
# use much longer context to make sure input length
test_length = min(in_len*2, 8192)
while test_length not in [32, 256, 1024, 2048, 8192]:
test_length = test_length * 2
input_str = open(f"prompt/{test_length}.txt", 'r').read()
# As different tokenizer has different encodings,
# slice the input_ids to ensure the prompt length is required length.
input_ids = tokenizer.encode(input_str, return_tensors="pt")
input_ids = input_ids[:, :in_len]
true_str = tokenizer.batch_decode(input_ids)[0]
input_list = [true_str] * batch_size
input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to('xpu')
actual_in_len = input_ids.shape[1]
result[in_out] = []
for i in range(num_trials + warm_up):
st = time.perf_counter()
if streaming:
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
num_beams=num_beams, streamer=streamer)
else:
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
num_beams=num_beams)
torch.xpu.synchronize()
end = time.perf_counter()
output_ids = output_ids.cpu()
print("model generate cost: " + str(end - st))
output = tokenizer.batch_decode(output_ids)
if not streaming:
print(output[0])
actual_out_len = output_ids.shape[1] - actual_in_len
if i >= warm_up:
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
actual_in_len, actual_out_len, load_time, model.peak_memory])
# torch.xpu.empty_cache() # this may make first token slower
except RuntimeError:
traceback.print_exc()
pass
torch.xpu.synchronize()
torch.xpu.empty_cache()
model.to('cpu')
torch.xpu.synchronize()
torch.xpu.empty_cache()
del model
gc.collect()
return result
def run_transformer_int4_loadlowbit_gpu_win(repo_id,
local_model_hub,
in_out_pairs,