parent
26850ebd36
commit
0383306688
3 changed files with 15 additions and 6 deletions
|
|
@ -32,7 +32,8 @@ ggml_tensor_qtype = {"sym_int4": 2, # q4_0 in ggml
|
||||||
"sym_int8": 8, # q8_0 in ggml
|
"sym_int8": 8, # q8_0 in ggml
|
||||||
"nf4": 10,
|
"nf4": 10,
|
||||||
"nf3": 11,
|
"nf3": 11,
|
||||||
"fp16": 12}
|
"fp16": 12,
|
||||||
|
"fp8": 15}
|
||||||
|
|
||||||
_llama_quantize_type = {"q4_0": 2,
|
_llama_quantize_type = {"q4_0": 2,
|
||||||
"q4_1": 3,
|
"q4_1": 3,
|
||||||
|
|
|
||||||
|
|
@ -146,6 +146,9 @@ def _optimize_pre(model):
|
||||||
def ggml_convert_low_bit(model, qtype, optimize_model=True,
|
def ggml_convert_low_bit(model, qtype, optimize_model=True,
|
||||||
convert_shape_only=False, device="cpu",
|
convert_shape_only=False, device="cpu",
|
||||||
modules_to_not_convert=None):
|
modules_to_not_convert=None):
|
||||||
|
logger.info(f"Converting the current model to "
|
||||||
|
f"{list(ggml_tensor_qtype.keys())[list(ggml_tensor_qtype.values()).index(qtype)]} "
|
||||||
|
f"format......")
|
||||||
modules_to_not_convert = [] if modules_to_not_convert is None else modules_to_not_convert
|
modules_to_not_convert = [] if modules_to_not_convert is None else modules_to_not_convert
|
||||||
|
|
||||||
if optimize_model:
|
if optimize_model:
|
||||||
|
|
|
||||||
|
|
@ -64,6 +64,7 @@ SYM_INT4 = ggml_tensor_qtype["sym_int4"]
|
||||||
SYM_INT8 = ggml_tensor_qtype["sym_int8"]
|
SYM_INT8 = ggml_tensor_qtype["sym_int8"]
|
||||||
NF4 = ggml_tensor_qtype["nf4"]
|
NF4 = ggml_tensor_qtype["nf4"]
|
||||||
NF3 = ggml_tensor_qtype["nf3"]
|
NF3 = ggml_tensor_qtype["nf3"]
|
||||||
|
FP8 = ggml_tensor_qtype["fp8"]
|
||||||
|
|
||||||
|
|
||||||
def ggml_convert_qtype(tensor: torch.Tensor, qtype: int,
|
def ggml_convert_qtype(tensor: torch.Tensor, qtype: int,
|
||||||
|
|
@ -87,9 +88,13 @@ def ggml_convert_qtype(tensor: torch.Tensor, qtype: int,
|
||||||
device=device)
|
device=device)
|
||||||
|
|
||||||
if not convert_shape_only and device != 'meta':
|
if not convert_shape_only and device != 'meta':
|
||||||
dst = ctypes.c_void_p(dst_tensor.data.data_ptr())
|
if qtype == FP8:
|
||||||
hist = (ctypes.c_int64 * 16)()
|
import linear_q4_0
|
||||||
ggml.ggml_quantize_tensor(src, dst, qtype, n, k, hist)
|
linear_q4_0.cvt_fp32_e4m3_rne(tensor, dst_tensor, n, k)
|
||||||
|
else:
|
||||||
|
dst = ctypes.c_void_p(dst_tensor.data.data_ptr())
|
||||||
|
hist = (ctypes.c_int64 * 16)()
|
||||||
|
ggml.ggml_quantize_tensor(src, dst, qtype, n, k, hist)
|
||||||
return dst_tensor
|
return dst_tensor
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -378,8 +383,8 @@ class LowBitLinear(nn.Linear):
|
||||||
else:
|
else:
|
||||||
# CPU logic
|
# CPU logic
|
||||||
# todo may need to set a different number on different platforms
|
# todo may need to set a different number on different platforms
|
||||||
invalidInputError(self.qtype != NF3 and self.qtype != NF4,
|
invalidInputError(self.qtype != NF3 and self.qtype != NF4 and self.qtype != FP8,
|
||||||
"NF3 and NF4 quantization are currently not supported on CPU")
|
"NF3, NF4 and FP8 quantization are currently not supported on CPU")
|
||||||
if IS_SERVER and (not IS_SPR) and \
|
if IS_SERVER and (not IS_SPR) and \
|
||||||
self.qtype == SYM_INT4 and x_2d.shape[0] >= TORCH_LINEAR_THRESHOLD:
|
self.qtype == SYM_INT4 and x_2d.shape[0] >= TORCH_LINEAR_THRESHOLD:
|
||||||
x0_fp32 = ggml_int4_convert_fp32(x0, self.weight_shape, self.weight_length)
|
x0_fp32 = ggml_int4_convert_fp32(x0, self.weight_shape, self.weight_length)
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue