diff --git a/docs/readthedocs/image/KMS-Client.png b/docs/readthedocs/image/KMS-Client.png new file mode 100644 index 00000000..6603dd2a Binary files /dev/null and b/docs/readthedocs/image/KMS-Client.png differ diff --git a/docs/readthedocs/image/KMS_End-to-end_Example.png b/docs/readthedocs/image/KMS_End-to-end_Example.png new file mode 100644 index 00000000..7117537e Binary files /dev/null and b/docs/readthedocs/image/KMS_End-to-end_Example.png differ diff --git a/docs/readthedocs/source/doc/PPML/Overview/trusted_fl.md b/docs/readthedocs/source/doc/PPML/Overview/trusted_fl.md index 46510498..ba5b2056 100644 --- a/docs/readthedocs/source/doc/PPML/Overview/trusted_fl.md +++ b/docs/readthedocs/source/doc/PPML/Overview/trusted_fl.md @@ -31,45 +31,113 @@ Key features: * Training Worker in SGX ## Example -### Prepare environment -#### SGX -TO ADD -#### Get jar ready -##### Build from source -```bash -git clone https://github.com/intel-analytics/BigDL.git -cd BigDL/scala -./make-dist.sh -``` -the jar would be `BigDL/scala/ppml/target/bigdl-ppml...jar-with-dependencies.jar` -##### Download pre-build -```bash -wget -``` -#### Config -If deploying PPML on cluster, need to overwrite config `./ppml-conf.yaml`. Default config (localhost:8980) would be used if no `ppml-conf.yaml` exists in the directory. -#### Start FL Server -```bash -java -cp com.intel.analytics.bigdl.ppml.FLServer -``` -### HFL Logistic Regression -We provide an example demo in `BigDL/scala/ppml/demo` -```bash -# client 1 -java -cp com.intel.analytics.bigdl.ppml.example.HflLogisticRegression -d data/diabetes-hfl-1.csv +### Before running code -# client 2 -java -cp com.intel.analytics.bigdl.ppml.example.HflLogisticRegression -d data/diabetes-hfl-2.csv -``` -### VFL Logistic Regression -```bash -# client 1 -java -cp com.intel.analytics.bigdl.ppml.example.VflLogisticRegression -d data/diabetes-vfl-1.csv +#### **Prepare Docker Image** -# client 2 -java -cp com.intel.analytics.bigdl.ppml.example.VflLogisticRegression -d data/diabetes-vfl-2.csv +##### **Build jar from Source** + +```bash +cd BigDL/scala && bash make-dist.sh -DskipTests -Pspark_3.x +mv ppml/target/bigdl-ppml-spark_3.1.2-0.14.0-SNAPSHOT-jar-with-dependencies.jar ppml/demo +cd ppml/demo ``` + +##### **Build Image** +Modify your `http_proxy` in `build-image.sh` then run: + +```bash +./build-image.sh +``` + +#### **Enclave key** +You need to generate your enclave key using the command below, and keep it safely for future remote attestations and to start SGX enclaves more securely. + +It will generate a file `enclave-key.pem` in your present working directory, which will be your enclave key. To store the key elsewhere, modify the outputted file path. + +```bash +openssl genrsa -3 -out enclave-key.pem 3072 +``` + +Then modify `ENCLAVE_KEY_PATH` in `deploy_fl_container.sh` with your path to `enclave-key.pem`. + +#### **Tls certificate** +If you want to build tls channel with certifacate, you need to prepare the secure keys. In this tutorial, you can generate keys with root permission (test only, need input security password for keys). + +**Note: Must enter `localhost` in step `Common Name` for test purpose.** + +```bash +sudo bash ../../../ppml/scripts/generate-keys.sh +``` + +If run in container, please modify `KEYS_PATH` to `keys/` you generated in last step in `deploy_fl_container.sh`. This dir will mount to container's `/ppml/trusted-big-data-ml/work/keys`, then modify the `privateKeyFilePath` and `certChainFilePath` in `ppml-conf.yaml` with container's absolute path. + +If not in container, just modify the `privateKeyFilePath` and `certChainFilePath` in `ppml-conf.yaml` with your local path. + +If you don't want to build tls channel with cerfiticate, just delete the `privateKeyFilePath` and `certChainFilePath` in `ppml-conf.yaml`. + +Then modify `DATA_PATH` to `./data` with absolute path in your machine and your local ip in `deploy_fl_container.sh`. The `./data` path will mlount to container's `/ppml/trusted-big-data-ml/work/data`, so if you don't run in container, you need to modify the data path in `runH_VflClient1_2.sh`. + +### **Start container** +Running this command will start a docker container and initialize the sgx environment. + +```bash +bash deploy_fl_container.sh +sudo docker exec -it flDemo bash +./init.sh +``` + +### **Start FLServer** +In container, run: + +```bash +./runFlServer.sh +``` +The fl-server will start and listen on 8980 port. Both horizontal fl-demo and vertical fl-demo need two clients. You can change the listening port and client number by editing `BigDL/scala/ppml/demo/ppml-conf.yaml`'s `serverPort` and `clientNum`. + +### **HFL Logistic Regression** +Open two new terminals, run: + +```bash +sudo docker exec -it flDemo bash +``` + +to enter the container, then in a terminal run: + +```bash +./runHflClient1.sh +``` + +in another terminal run: + +```bash +./runHflClient2.sh +``` + +Then we start two horizontal fl-clients to cooperate in training a model. + +### **VFL Logistic Regression** +Open two new windows, run: + +```bash +sudo docker exec -it flDemo bash +``` + +to enter the container, then in a terminal run: + +```bash +./runVflClient1.sh +``` + +in another terminal run: + +```bash +./runVflClient2.sh +``` + +Then we start two vertical fl-clients to cooperate in training a model. + ## References 1. [Intel SGX](https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html) -2. Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federated Machine Learning: Concept and Applications. ACM Trans. Intell. Syst. Technol. 10, 2, Article 12 (February 2019), 19 pages. DOI:https://doi.org/10.1145/3298981 +2. Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federated Machine Learning: Concept and Applications. ACM Trans. Intell. Syst. Technol. 10, 2, Article 12 (February 2019), 19 pages. DOI:https://doi.org/10.1145/3298981 \ No newline at end of file diff --git a/docs/readthedocs/source/doc/PPML/QuickStart/tpc-h_with_sparksql_on_k8s.md b/docs/readthedocs/source/doc/PPML/QuickStart/tpc-h_with_sparksql_on_k8s.md new file mode 100644 index 00000000..86fbe2eb --- /dev/null +++ b/docs/readthedocs/source/doc/PPML/QuickStart/tpc-h_with_sparksql_on_k8s.md @@ -0,0 +1,152 @@ +## TPC-H with Trusted SparkSQL on Kubernetes ## + +### Prerequisites ### +- Hardware that supports SGX +- A fully configured Kubernetes cluster +- Intel SGX Device Plugin to use SGX in K8S cluster (install following instructions [here](https://bigdl.readthedocs.io/en/latest/doc/PPML/QuickStart/deploy_intel_sgx_device_plugin_for_kubernetes.html "here")) + +### Prepare TPC-H kit and data ### +1. Download and compile tpc-h +``` +git clone https://github.com/intel-analytics/zoo-tutorials.git +cd zoo-tutorials/tpch-spark + +sed -i 's/2.11.7/2.12.1/g' tpch.sbt +sed -i 's/2.4.0/3.1.2/g' tpch.sbt +sbt package + +cd dbgen +make +``` +2. Generate data + +Generate input data with size ~100GB (user can adjust data size to need): +``` +./dbgen -s 100 +``` + +### Deploy PPML TPC-H on Kubernetes ### +1. Pull docker image +``` +sudo docker pull intelanalytics/bigdl-ppml-trusted-big-data-ml-python-graphene:0.14.0-SNAPSHOT +``` +2. Prepare SGX keys, make sure keys and tpch-spark can be accessed on each K8S node +3. Start a bigdl-ppml enabled Spark K8S client container with configured local IP, key, tpch and kuberconfig path +``` +export ENCLAVE_KEY=/root/keys/enclave-key.pem +export DATA_PATH=/root/zoo-tutorials/tpch-spark +export KEYS_PATH=/root/keys +export KUBERCONFIG_PATH=/root/kuberconfig +export LOCAL_IP=$local_ip +export DOCKER_IMAGE=intelanalytics/bigdl-ppml-trusted-big-data-ml-python-graphene:0.14.0-SNAPSHOT +sudo docker run -itd \ + --privileged \ + --net=host \ + --name=spark-local-k8s-client \ + --oom-kill-disable \ + --device=/dev/sgx/enclave \ + --device=/dev/sgx/provision \ + -v /var/run/aesmd/aesm.socket:/var/run/aesmd/aesm.socket \ + -v $ENCLAVE_KEY:/graphene/Pal/src/host/Linux-SGX/signer/enclave-key.pem \ + -v $DATA_PATH:/ppml/trusted-big-data-ml/work/tpch-spark \ + -v $KEYS_PATH:/ppml/trusted-big-data-ml/work/keys \ + -v $KUBERCONFIG_PATH:/root/.kube/config \ + -e RUNTIME_SPARK_MASTER=k8s://https://$LOCAL_IP:6443 \ + -e RUNTIME_K8S_SERVICE_ACCOUNT=spark \ + -e RUNTIME_K8S_SPARK_IMAGE=$DOCKER_IMAGE \ + -e RUNTIME_DRIVER_HOST=$LOCAL_IP \ + -e RUNTIME_DRIVER_PORT=54321 \ + -e RUNTIME_EXECUTOR_INSTANCES=1 \ + -e RUNTIME_EXECUTOR_CORES=4 \ + -e RUNTIME_EXECUTOR_MEMORY=20g \ + -e RUNTIME_TOTAL_EXECUTOR_CORES=4 \ + -e RUNTIME_DRIVER_CORES=4 \ + -e RUNTIME_DRIVER_MEMORY=10g \ + -e SGX_MEM_SIZE=64G \ + -e SGX_LOG_LEVEL=error \ + -e LOCAL_IP=$LOCAL_IP \ + $DOCKER_IMAGE bash +``` +4. Attach to the client container +``` +sudo docker exec -it spark-local-k8s-client bash +``` +5. Modify `spark-executor-template.yaml`, add path of `enclave-key`, `tpch-spark` and `kuberconfig` on host +``` +apiVersion: v1 +kind: Pod +spec: + containers: + - name: spark-executor + securityContext: + privileged: true + volumeMounts: + ... + - name: tpch + mountPath: /ppml/trusted-big-data-ml/work/tpch-spark + - name: kubeconf + mountPath: /root/.kube/config + volumes: + - name: enclave-key + hostPath: + path: /root/keys/enclave-key.pem + ... + - name: tpch + hostPath: + path: /path/to/tpch-spark + - name: kubeconf + hostPath: + path: /path/to/kuberconfig +``` +6. Run PPML TPC-H +``` +export TF_MKL_ALLOC_MAX_BYTES=10737418240 && \ +export SPARK_LOCAL_IP=$LOCAL_IP && \ +export HDFS_HOST=$hdfs_host_ip && \ +export HDFS_PORT=$hdfs_port && \ +export TPCH_DIR=/ppml/trusted-big-data-ml/work/tpch-spark \ +export INPUT_DIR=$TPCH_DIR/dbgen \ +export OUTPUT_DIR=hdfs://$HDFS_HOST:$HDFS_PORT/tpc-h/output \ + /opt/jdk8/bin/java \ + -cp '$TPCH_DIR/target/scala-2.12/spark-tpc-h-queries_2.12-1.0.jar:$TPCH_DIR/dbgen/*:/ppml/trusted-big-data-ml/work/spark-3.1.2/conf/:/ppml/trusted-big-data-ml/work/spark-3.1.2/jars/*' \ + -Xmx10g \ + -Dbigdl.mklNumThreads=1 \ + org.apache.spark.deploy.SparkSubmit \ + --master $RUNTIME_SPARK_MASTER \ + --deploy-mode client \ + --name spark-tpch-sgx \ + --conf spark.driver.host=$LOCAL_IP \ + --conf spark.driver.port=54321 \ + --conf spark.driver.memory=10g \ + --conf spark.driver.blockManager.port=10026 \ + --conf spark.blockManager.port=10025 \ + --conf spark.scheduler.maxRegisteredResourcesWaitingTime=5000000 \ + --conf spark.worker.timeout=600 \ + --conf spark.python.use.daemon=false \ + --conf spark.python.worker.reuse=false \ + --conf spark.network.timeout=10000000 \ + --conf spark.starvation.timeout=250000 \ + --conf spark.rpc.askTimeout=600 \ + --conf spark.sql.autoBroadcastJoinThreshold=-1 \ + --conf spark.io.compression.codec=lz4 \ + --conf spark.sql.shuffle.partitions=8 \ + --conf spark.speculation=false \ + --conf spark.executor.heartbeatInterval=10000000 \ + --conf spark.executor.instances=24 \ + --executor-cores 8 \ + --total-executor-cores 192 \ + --executor-memory 16G \ + --properties-file /ppml/trusted-big-data-ml/work/bigdl-0.14.0-SNAPSHOT/conf/spark-bigdl.conf \ + --conf spark.kubernetes.authenticate.serviceAccountName=spark \ + --conf spark.kubernetes.container.image=$RUNTIME_K8S_SPARK_IMAGE \ + --conf spark.kubernetes.executor.podTemplateFile=/ppml/trusted-big-data-ml/spark-executor-template.yaml \ + --conf spark.kubernetes.executor.deleteOnTermination=false \ + --conf spark.kubernetes.executor.podNamePrefix=spark-tpch-sgx \ + --conf spark.kubernetes.sgx.enabled=true \ + --conf spark.kubernetes.sgx.mem=32g \ + --conf spark.kubernetes.sgx.jvm.mem=10g \ + --class main.scala.TpchQuery \ + --verbose \ + $TPCH_DIR/target/scala-2.12/spark-tpc-h-queries_2.12-1.0.jar \ + $INPUT_DIR $OUTPUT_DIR +``` diff --git a/docs/readthedocs/source/index.rst b/docs/readthedocs/source/index.rst index 1e4549f4..93b96d6c 100644 --- a/docs/readthedocs/source/index.rst +++ b/docs/readthedocs/source/index.rst @@ -78,6 +78,7 @@ BigDL Documentation doc/PPML/QuickStart/build_kernel_with_sgx.md doc/PPML/QuickStart/deploy_intel_sgx_device_plugin_for_kubernetes.md doc/PPML/QuickStart/trusted-serving-on-k8s-guide.md + doc/PPML/QuickStart/tpc-h_with_sparksql_on_k8s.md .. toctree:: :maxdepth: 1