add npu load_low_bit api in all-in-one benchmark (#12103)
This commit is contained in:
parent
47a9597f24
commit
02399021d6
3 changed files with 157 additions and 0 deletions
|
|
@ -36,6 +36,7 @@ test_api:
|
|||
# - "speculative_cpu" # on Intel CPU, inference with self-speculative decoding
|
||||
# - "deepspeed_transformer_int4_cpu" # on Intel CPU, deepspeed autotp inference
|
||||
# - "transformers_int4_npu_win" # on Intel NPU for Windows, transformer-like API, (qtype=int4)
|
||||
# - "transformers_int4_loadlowbit_npu_win" # on Intel NPU for Windows, transformer-like API, (qtype=int4), use load_low_bit API. Please make sure you have used the save_npu.py to save the converted low bit model
|
||||
cpu_embedding: False # whether put embedding to CPU
|
||||
streaming: False # whether output in streaming way (only available now for gpu win related test_api)
|
||||
optimize_model: False # whether apply further optimization on NPU (only available now for transformers_int4_npu_win test_api)
|
||||
|
|
|
|||
|
|
@ -189,6 +189,8 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
|
|||
result = run_pipeline_parallel_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, cpu_embedding, fp16=use_fp16_torch_dtype)
|
||||
elif test_api == 'transformers_int4_npu_win':
|
||||
result = transformers_int4_npu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, optimize_model, transpose_value_cache)
|
||||
elif test_api == 'transformers_int4_loadlowbit_npu_win':
|
||||
result = run_transformer_int4_loadlowbit_npu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, optimize_model, transpose_value_cache)
|
||||
else:
|
||||
invalidInputError(False, "Unknown test_api " + test_api + ", please check your config.yaml.")
|
||||
|
||||
|
|
@ -669,6 +671,78 @@ def transformers_int4_npu_win(repo_id,
|
|||
gc.collect()
|
||||
return result
|
||||
|
||||
def run_transformer_int4_loadlowbit_npu_win(repo_id,
|
||||
local_model_hub,
|
||||
in_out_pairs,
|
||||
warm_up,
|
||||
num_trials,
|
||||
num_beams,
|
||||
low_bit,
|
||||
batch_size,
|
||||
optimize_model,
|
||||
transpose_value_cache):
|
||||
from ipex_llm.transformers.npu_model import AutoModel, AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer, LlamaTokenizer
|
||||
|
||||
model_path = get_model_path(repo_id, local_model_hub)
|
||||
in_out_len = in_out_pairs[0].split("-")
|
||||
max_output_len = max(int(in_out_len[0]) + int(in_out_len[1]), 1024)
|
||||
# Load model in 4 bit,
|
||||
# which convert the relevant layers in the model into INT4 format
|
||||
st = time.perf_counter()
|
||||
if repo_id in CHATGLM_IDS:
|
||||
model = AutoModel.load_low_bit(model_path+'-npu-'+low_bit, trust_remote_code=True,
|
||||
optimize_model=optimize_model, max_output_len=max_output_len, max_prompt_len=int(in_out_len[0]), transpose_value_cache=transpose_value_cache,
|
||||
torch_dtype=torch.float16, attn_implementation="eager").eval()
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path+'-npu-'+low_bit, trust_remote_code=True)
|
||||
elif repo_id in LLAMA_IDS:
|
||||
model = AutoModelForCausalLM.load_low_bit(model_path+'-npu-'+low_bit, trust_remote_code=True, torch_dtype=torch.float16,
|
||||
optimize_model=optimize_model, max_output_len=max_output_len, max_prompt_len=int(in_out_len[0]), transpose_value_cache=transpose_value_cache,
|
||||
use_cache=True, attn_implementation="eager").eval()
|
||||
tokenizer = LlamaTokenizer.from_pretrained(model_path+'-npu-'+low_bit, trust_remote_code=True)
|
||||
else:
|
||||
model = AutoModelForCausalLM.load_low_bit(model_path+'-npu-'+low_bit, trust_remote_code=True, torch_dtype=torch.float16,
|
||||
optimize_model=optimize_model, max_output_len=max_output_len, max_prompt_len=int(in_out_len[0]), transpose_value_cache=transpose_value_cache,
|
||||
use_cache=True, attn_implementation="eager").eval()
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path+'-npu-'+low_bit, trust_remote_code=True)
|
||||
end = time.perf_counter()
|
||||
load_time = end - st
|
||||
print(">> loading of model costs {}s".format(load_time))
|
||||
|
||||
model = BenchmarkWrapper(model)
|
||||
|
||||
result = {}
|
||||
with torch.inference_mode():
|
||||
for in_out in in_out_pairs:
|
||||
in_out_len = in_out.split("-")
|
||||
in_len = int(in_out_len[0])
|
||||
out_len = int(in_out_len[1])
|
||||
input_str = get_continuation_input_str(in_len, tokenizer)
|
||||
# As different tokenizer has different encodings,
|
||||
# slice the input_ids to ensure the prompt length is required length.
|
||||
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
||||
input_ids = input_ids[:, :in_len]
|
||||
true_str = tokenizer.batch_decode(input_ids)[0]
|
||||
input_list = [true_str] * batch_size
|
||||
input_ids = tokenizer(input_list, return_tensors="pt").input_ids
|
||||
input_ids = input_ids[:, :in_len]
|
||||
actual_in_len = input_ids.shape[1]
|
||||
result[in_out] = []
|
||||
for i in range(num_trials + warm_up):
|
||||
st = time.perf_counter()
|
||||
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
||||
min_new_tokens=out_len, num_beams=num_beams)
|
||||
end = time.perf_counter()
|
||||
print("model generate cost: " + str(end - st))
|
||||
output = tokenizer.batch_decode(output_ids)
|
||||
print(output[0])
|
||||
actual_out_len = output_ids.shape[1] - actual_in_len
|
||||
if i >= warm_up:
|
||||
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
|
||||
actual_in_len, actual_out_len, load_time])
|
||||
del model
|
||||
gc.collect()
|
||||
return result
|
||||
|
||||
def run_optimize_model_gpu(repo_id,
|
||||
local_model_hub,
|
||||
|
|
|
|||
82
python/llm/dev/benchmark/all-in-one/save_npu.py
Normal file
82
python/llm/dev/benchmark/all-in-one/save_npu.py
Normal file
|
|
@ -0,0 +1,82 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
# this code is to support converting of model in load bit
|
||||
# for performance tests using load_low_bit
|
||||
|
||||
import time
|
||||
import torch
|
||||
import os
|
||||
import argparse
|
||||
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer
|
||||
from run import get_model_path
|
||||
|
||||
current_dir = os.path.dirname(os.path.realpath(__file__))
|
||||
|
||||
def save_npu_model_in_low_bit(repo_id,
|
||||
local_model_hub,
|
||||
low_bit,
|
||||
max_output_len, max_prompt_len, intra_pp, inter_pp, disable_transpose_value_cache):
|
||||
model_path = get_model_path(repo_id, local_model_hub)
|
||||
# Load model in 4 bit,
|
||||
# which convert the relevant layers in the model into INT4 format
|
||||
st = time.perf_counter()
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_path,
|
||||
torch_dtype=torch.float16,
|
||||
trust_remote_code=True,
|
||||
attn_implementation="eager",
|
||||
load_in_low_bit="sym_int4",
|
||||
optimize_model=True,
|
||||
max_output_len=max_output_len,
|
||||
max_prompt_len=max_prompt_len,
|
||||
intra_pp=intra_pp,
|
||||
inter_pp=inter_pp,
|
||||
transpose_value_cache=not disable_transpose_value_cache,
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
end = time.perf_counter()
|
||||
print(">> loading of and converting of model costs {}s".format(end - st))
|
||||
|
||||
model.save_low_bit(model_path+'-npu-'+low_bit)
|
||||
tokenizer.save_pretrained(model_path+'-npu-'+low_bit)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Predict Tokens using `generate()` API for npu model"
|
||||
)
|
||||
parser.add_argument("--max-output-len", type=int, default=1024)
|
||||
parser.add_argument("--max-prompt-len", type=int, default=512)
|
||||
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
|
||||
parser.add_argument("--intra-pp", type=int, default=2)
|
||||
parser.add_argument("--inter-pp", type=int, default=2)
|
||||
|
||||
args = parser.parse_args()
|
||||
from omegaconf import OmegaConf
|
||||
conf = OmegaConf.load(f'{current_dir}/config.yaml')
|
||||
|
||||
for model in conf.repo_id:
|
||||
save_npu_model_in_low_bit(repo_id=model,
|
||||
local_model_hub=conf['local_model_hub'],
|
||||
low_bit=conf['low_bit'],
|
||||
max_output_len=args.max_output_len,
|
||||
max_prompt_len=args.max_prompt_len,
|
||||
intra_pp=args.intra_pp,
|
||||
inter_pp=args.inter_pp,
|
||||
disable_transpose_value_cache=args.disable_transpose_value_cache
|
||||
)
|
||||
Loading…
Reference in a new issue