[NPU] Add support for running mp minicpm model on npu (#11909)

* add initial support for npu minicpm mp

* fix minicpm-1b abnormal output error
This commit is contained in:
SONG Ge 2024-08-26 17:52:55 +08:00 committed by GitHub
parent dd303776cf
commit 019f725d4d
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 1012 additions and 0 deletions

View file

@ -14,6 +14,7 @@
# limitations under the License.
import torch
import importlib
def convert_forward(m, target_m, new_forward):
@ -83,3 +84,27 @@ def optimize_llm(
from transformers.models.qwen2.modeling_qwen2 import Qwen2ForCausalLM
from ipex_llm.transformers.npu_models.qwen2_mp import qwen2_casullm_forward
convert_forward(model, Qwen2ForCausalLM, qwen2_casullm_forward)
elif model.config.model_type == "minicpm":
from ipex_llm.transformers.npu_models.minicpm_mp import gen_minicpm_fused_model_forward
from ipex_llm.transformers.npu_models.minicpm_mp import DecodeRunner, PrefillRunner
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
decode_runner = DecodeRunner(
model,
max_seq_len=max_output_len,
inter_pp=inter_pp,
intra_pp=intra_pp,
transpose_value_cache=transpose_value_cache,
)
prefill_runner = PrefillRunner(
model,
max_output_len=max_output_len,
max_prompt_len=max_prompt_len,
transpose_value_cache=transpose_value_cache,
)
minicpm_model_forward = gen_minicpm_fused_model_forward(
prefill_runner=prefill_runner, decode_runner=decode_runner
)
convert_forward(model, module.MiniCPMModel, minicpm_model_forward)

View file

@ -0,0 +1,987 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import torch
import time
import argparse
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
from transformers import AutoTokenizer
from intel_npu_acceleration_library.backend.factory import NNFactory
from typing import Optional, Sequence, List, Union, Any, Tuple
import numpy as np
import math
from intel_npu_acceleration_library.backend.runtime import set_contiguous, record_function
from intel_npu_acceleration_library.backend.runtime import adapt_output_tensor, _model_cache
from collections import deque
from transformers.cache_utils import Cache
from intel_npu_acceleration_library.backend.bindings import lib as backend_lib
import ctypes
from ipex_llm.utils.common import invalidInputError
from typing import Optional, List, Generator
import uuid
from functools import partial
import torch.nn.functional as F
import torch.nn.parallel
import torch.distributed as dist
from filelock import FileLock
from transformers.utils import logging
logger = logging.get_logger(__name__)
import gc
from colorama import Fore, Back, Style
import torch.multiprocessing as mp
from transformers.cache_utils import Cache
from transformers.modeling_outputs import BaseModelOutputWithPast
from ipex_llm.transformers.npu_models.mp_models_base import run_model
from ipex_llm.transformers.npu_models.mp_models_base import LLMBaseNNFactory
class LowBitLlamaMultiDecoderlayer(LLMBaseNNFactory):
def __init__(
self,
# batch_size: int,
# seq_len: int,
# hidden_size: int,
hidden_shape: Sequence[int],
*shapes,
num_heads: int,
num_key_value_heads: int,
num_layers: int,
cached_cos,
cached_sin,
input_layernorm_weights=None,
post_attn_layernorm_weights=None,
mode: str = "prefill",
dtype: np.dtype = np.int8,
max_seq_len: int = 1024,
transpose_value: bool = False,
profile: bool = False,
device: str = "NPU",
rms_norm_eps,
intermediate_size,
scale_depth,
num_hidden_layers
):
super().__init__(max_seq_len=max_seq_len,
transpose_value=transpose_value,
dtype=dtype,
profile=profile,
device=device)
self.max_seq_len = max_seq_len
self.intermediate_size = intermediate_size
self.dtype = dtype
self.cached_cos = cached_cos
self.cached_sin = cached_sin
self.batch_size, self.seq_len, self.hidden_size = hidden_shape
self.mode = mode
self.rms_norm_eps = rms_norm_eps
self.transpose_value = transpose_value
self.num_layers = num_layers
cos = self.constant(self.cached_cos)
self.cos = self.unsqueeze(cos, axis=0)
sin = self.constant(self.cached_sin)
self.sin = self.unsqueeze(sin, axis=0)
if mode == "decode":
self.kv_seq_len = self.max_seq_len + 1
else:
self.kv_seq_len = self.seq_len
self.num_heads = num_heads
self.num_key_value_heads = num_key_value_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
# define input, the order self.parameter matters
input = self.create_input_op((self.batch_size, self.seq_len, self.hidden_size))
# Self Attention
if mode == "decode":
attention_mask = self.create_input_op((self.batch_size, 1, 1, self.max_seq_len + 1))
else:
attention_mask = self.create_input_op((self.batch_size, 1, self.seq_len, self.seq_len))
position_ids = self.create_input_op((self.batch_size, self.seq_len))
past_keys = []
past_values = []
if mode == "decode":
for i in range(num_layers):
past_key = self.create_cache_op(
(self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim)
)
if transpose_value:
past_value = self.create_cache_op(
(self.batch_size, self.num_key_value_heads, self.head_dim, self.max_seq_len)
)
else:
past_value = self.create_cache_op(
(self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim)
)
past_keys.append(past_key)
past_values.append(past_value)
else:
past_keys = [None] * num_layers
past_values = [None] * num_layers
if input_layernorm_weights is None:
input_layernorm_weights = []
post_attn_layernorm_weights = []
for i in range(num_layers):
input_layernorm_weights.append(
self.create_input_op(
(
1,
self.hidden_size,
)
)
)
post_attn_layernorm_weights.append(
self.create_input_op(
(
1,
self.hidden_size,
)
)
)
else:
input_layernorm_weights = [self.constant(w) for w in input_layernorm_weights]
post_attn_layernorm_weights = [self.constant(w) for w in post_attn_layernorm_weights]
hidden_states = input
curr_key_values = []
for i in range(num_layers):
hidden_states, new_key_states, new_value_states = self.build_decoder(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
input_layernorm_weight=input_layernorm_weights[i],
post_attention_layernorm_weight=post_attn_layernorm_weights[i],
scale_depth=scale_depth,
num_hidden_layers=num_hidden_layers,
past_key=past_keys[i],
past_value=past_values[i],
)
curr_key_values.append((new_key_states, new_value_states))
# define outputs
hidden_states = self.convert_to_fp16(hidden_states)
for i in range(num_layers):
new_key_states = self.convert_to_fp16(curr_key_values[i][0])
new_value_states = self.convert_to_fp16(curr_key_values[i][1])
print("start compiling")
self.compile()
def build_decoder(
self,
hidden_states,
attention_mask,
position_ids,
input_layernorm_weight,
post_attention_layernorm_weight,
scale_depth,
num_hidden_layers,
past_key=None,
past_value=None,
):
residual = hidden_states
input_2d = self.reshape(hidden_states, (self.batch_size * self.seq_len, self.hidden_size))
input_2d = self.layer_norm(input_2d, input_layernorm_weight)
attn_output, new_key_states, new_value_states = self.attention(
hidden_states=input_2d,
position_ids=position_ids,
attention_mask=attention_mask,
past_key=past_key,
past_value=past_value,
cos=self.cos,
sin=self.sin,
mode=self.mode,
num_heads=self.num_heads,
num_key_value_heads=self.num_key_value_heads,
head_dim=self.head_dim,
seq_len=self.seq_len,
)
layer_scale_depth = scale_depth / math.sqrt(num_hidden_layers)
hidden_states = self.eltwise_add(residual,
attn_output * layer_scale_depth)
residual = hidden_states
hidden_states = self.layer_norm(hidden_states, post_attention_layernorm_weight)
hidden_states = self.mlp(hidden_states)
hidden_states = self.eltwise_add(residual,
hidden_states * layer_scale_depth)
hidden_states = self.convert_to_fp16(hidden_states)
return hidden_states, new_key_states, new_value_states
class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
def __init__(
self,
parameters: List[Tuple[torch.Tensor]],
input_laynorm_weights: List[torch.Tensor],
post_attn_layernorm_weights: List[torch.Tensor],
layer_indexes: List[int],
intra_stages: int,
cached_cos: torch.Tensor,
cached_sin: torch.Tensor,
num_heads: int,
head_dim: int,
num_key_value_heads: int,
rms_norm_eps,
intermediate_size,
scale_depth,
num_hidden_layers,
max_seq_len: int = 1024,
transpose_value: bool = False,
do_print: bool = False,
):
super().__init__()
self.do_print = do_print
op_parameters = []
for w in parameters:
if isinstance(w, tuple): # from QuantizedLinear
op_parameters.append((w[0].numpy(), w[1].numpy()))
else:
op_parameters.append(w.to(torch.float16).numpy())
self.op_parameters = op_parameters
self.op_id = str(uuid.uuid4())
self.max_seq_len = max_seq_len
self.transpose_value = transpose_value
if isinstance(parameters[0], tuple):
np_dtype = np.int8 if parameters[0][0].dtype == torch.int8 else np.uint8
else: # FP16 Linear
np_dtype = np.float16
self.intra_stages = intra_stages
self.layer_indexes = layer_indexes
num_layers = len(self.layer_indexes) // intra_stages
self.layer_ranges = []
for i in range(intra_stages):
if i == intra_stages - 1:
self.layer_ranges.append((i * num_layers, len(self.layer_indexes)))
else:
self.layer_ranges.append((i * num_layers, (i + 1) * num_layers))
self.backend_decoders = []
for i in range(intra_stages):
start, end = self.layer_ranges[i]
lm_0 = input_laynorm_weights[start:end]
lm_1 = post_attn_layernorm_weights[start:end]
decoder = LowBitLlamaMultiDecoderlayer(
[1, 1, num_heads * head_dim],
input_layernorm_weights=lm_0,
post_attn_layernorm_weights=lm_1,
cached_cos=cached_cos,
cached_sin=cached_sin,
num_heads=num_heads,
num_key_value_heads=num_key_value_heads,
num_layers=end - start,
max_seq_len=max_seq_len,
rms_norm_eps=rms_norm_eps,
intermediate_size=intermediate_size,
scale_depth=scale_depth,
num_hidden_layers=num_hidden_layers,
mode="decode",
transpose_value=self.transpose_value,
dtype=np_dtype,
)
self.backend_decoders.append(decoder)
for i in range(intra_stages):
start, end = self.layer_ranges[i]
self.backend_decoders[i].set_weights(self.op_id, op_parameters[start * 7:end * 7])
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs,
) -> torch.Tensor:
inputs = (
hidden_states.to(torch.float16),
attention_mask,
position_ids,
)
for i in range(self.intra_stages):
start, end = self.layer_ranges[i]
self.backend_decoders[i].update_cache(past_key_value, self.layer_indexes[start:end])
hidden_states, new_keys, new_values = LowBitLlamaMultiDecoderlayer.run_decoders(
inputs,
decoders=self.backend_decoders)
if self.do_print:
print("outputs:", hidden_states)
outputs = (hidden_states,)
outputs += (past_key_value, new_keys, new_values)
return outputs
def post_forward(self, past_key_value, new_keys, new_values):
key_value_states = []
for i in range(self.intra_stages):
for j in range(1, len(self.backend_decoders[i].torch_out)):
key_value_states.append(self.backend_decoders[i].torch_out[j])
cache_kwargs = {
"max_seq_len": self.max_seq_len,
"transpose": self.transpose_value,
}
for i in range(len(self.layer_indexes)):
key_states, value_states = past_key_value.update(
new_keys[i],
new_values[i],
self.layer_indexes[i],
cache_kwargs,
)
for i in range(self.intra_stages):
self.backend_decoders[i].load_cache_async()
class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
"""LLAMA MLP operation NPU backend."""
def __init__(
self,
parameters: List[torch.Tensor],
cached_cos,
cached_sin,
layer_norm_0,
layer_norm_1,
num_heads: int,
num_key_value_heads: int,
layer_idx: int,
rms_norm_eps,
intermediate_size,
scale_depth,
num_hidden_layers,
max_seq_len: int = 128,
transpose_value: bool = False,
):
super().__init__()
self.op_parameters = parameters
self.op_id = str(uuid.uuid4())
self.layer_idx = layer_idx
self.max_seq_len = max_seq_len
self.transpose_value = transpose_value
# self.rotary_emb = rotary_emb
if isinstance(parameters[0], tuple): # weight, scale from QuantizedLinear
np_dtype = np.int8 if parameters[0][0].dtype == torch.int8 else np.uint8
else: # FP16 Linear
np_dtype = np.float16
self.backend_cls_prefill = partial(
LowBitLlamaMultiDecoderlayer,
num_heads=num_heads,
num_key_value_heads=num_key_value_heads,
num_layers=1,
cached_cos=cached_cos,
cached_sin=cached_sin,
input_layernorm_weights=None,
post_attn_layernorm_weights=None,
max_seq_len=max_seq_len,
rms_norm_eps=rms_norm_eps,
intermediate_size=intermediate_size,
scale_depth=scale_depth,
num_hidden_layers=num_hidden_layers,
mode="prefill",
transpose_value=self.transpose_value,
dtype=np_dtype,
)
self.layer_norm_0 = layer_norm_0
self.layer_norm_1 = layer_norm_1
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs,
) -> torch.Tensor:
"""Torch module forward method.
Args:
x (torch.Tensor): Input tensor
Returns:
torch.Tensor: result
"""
seq_len = hidden_states.shape[1]
backend_cls = self.backend_cls_prefill
inputs = (hidden_states.to(torch.float16), attention_mask, position_ids)
inputs += (self.layer_norm_0, self.layer_norm_1)
hidden_states, past_key, past_value = run_model(
inputs, self.op_parameters, backend_cls, self.op_id, replica=2
)
cache_kwargs = {
"max_seq_len": self.max_seq_len,
"transpose": self.transpose_value,
}
key_states, value_states = past_key_value.update(
past_key, past_value, self.layer_idx, cache_kwargs
)
outputs = (hidden_states,)
outputs += (past_key_value,)
return outputs
def run_decode(
model,
rank,
world_size,
port,
layer_start,
layer_end,
intra_stages,
scale_depth,
max_seq_len,
transpose_value_cache,
input_queue,
result_queue,
):
os.environ["MASTER_ADDR"] = "127.0.0.1"
os.environ["MASTER_PORT"] = port
os.environ["RANK"] = str(rank)
os.environ["WORLD_SIZE"] = str(world_size)
print("start init process group, rank: ", rank, "world_size: ", world_size)
dist.init_process_group()
my_rank = dist.get_rank()
my_size = dist.get_world_size()
logger.info(f"rank: {my_rank}, size: {my_size}")
num_heads = model.model.layers[layer_start].self_attn.num_heads
num_key_value_heads = model.model.layers[layer_start].self_attn.num_key_value_heads
head_dim = model.model.layers[layer_start].self_attn.head_dim
rms_norm_eps = model.config.rms_norm_eps
intermediate_size = model.config.intermediate_size
num_hidden_layers = model.config.num_hidden_layers
deocderlayers = []
layer_weights = []
input_layer_norm_weights = []
post_attn_layernorm_weights = []
layer_indexs = range(layer_start, layer_end)
for layer_idx in layer_indexs:
curr_layer = model.model.layers[layer_idx]
attn_layer = curr_layer.self_attn
mlp_layer = curr_layer.mlp
weights = [
(attn_layer.q_proj.weight, attn_layer.q_proj.scale),
(attn_layer.k_proj.weight, attn_layer.k_proj.scale),
(attn_layer.v_proj.weight, attn_layer.v_proj.scale),
(attn_layer.o_proj.weight, attn_layer.o_proj.scale),
(mlp_layer.gate_proj.weight, mlp_layer.gate_proj.scale),
(mlp_layer.up_proj.weight, mlp_layer.up_proj.scale),
(mlp_layer.down_proj.weight, mlp_layer.down_proj.scale),
]
cached_cos = curr_layer.self_attn.rotary_emb.cos_cached.to(torch.float16)
cached_sin = curr_layer.self_attn.rotary_emb.sin_cached.to(torch.float16)
layer_norm_0 = curr_layer.input_layernorm.weight.to(torch.float16)
layer_norm_1 = curr_layer.post_attention_layernorm.weight.to(torch.float16)
layer_weights.extend(weights)
input_layer_norm_weights.append(layer_norm_0)
post_attn_layernorm_weights.append(layer_norm_1)
multi_decoder = FusedLlamaLowBitMultiDecoderlayer(
parameters=layer_weights,
input_laynorm_weights=input_layer_norm_weights,
post_attn_layernorm_weights=post_attn_layernorm_weights,
layer_indexes=layer_indexs,
intra_stages=intra_stages,
cached_cos=cached_cos,
cached_sin=cached_sin,
num_heads=num_heads,
head_dim=head_dim,
num_key_value_heads=num_key_value_heads,
rms_norm_eps=rms_norm_eps,
intermediate_size=intermediate_size,
scale_depth=scale_depth,
num_hidden_layers=num_hidden_layers,
max_seq_len=max_seq_len,
transpose_value=transpose_value_cache,
do_print=False,
)
dist.barrier()
past_key_values = None
control = torch.empty((), dtype=torch.int)
hidden_states = torch.empty((1, 1, head_dim * num_heads), dtype=torch.float16)
with torch.inference_mode():
while True:
dist.broadcast(control, src=0)
if control.item() == -2:
break
elif control.item() == -1:
past_key_values = input_queue.get()
else:
t0 = time.perf_counter()
past_seen_tokens = past_key_values.get_seq_length()
attention_mask = torch.ones([1, past_seen_tokens + 1], dtype=torch.int64)
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + 1, device=hidden_states.device
)
position_ids = cache_position.unsqueeze(0)
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
causal_mask = _prepare_4d_causal_attention_mask(
attention_mask,
(hidden_states.shape[0], hidden_states.shape[1]),
hidden_states,
past_seen_tokens,
)
pad_len = multi_decoder.max_seq_len + 1 - causal_mask.size(-1)
pad_mask = (0, pad_len)
padded_causal_mask = F.pad(
causal_mask.to(torch.float16), pad_mask, value=torch.finfo(torch.float16).min
)
padded_causal_mask[:, :, :, -1] = 0.0
dist.recv(hidden_states, src=rank - 1)
t1 = time.perf_counter()
layer_outputs = multi_decoder(
hidden_states,
attention_mask=padded_causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=False,
use_cache=True,
)
t2 = time.perf_counter()
hidden_states = layer_outputs[0]
t3 = time.perf_counter()
dist.send(hidden_states, dst=(rank + 1) % world_size)
t4 = time.perf_counter()
past_key_values = layer_outputs[1]
new_keys = layer_outputs[2]
new_values = layer_outputs[3]
multi_decoder.post_forward(past_key_values, new_keys, new_values)
class DecodeRunner:
def __init__(self, model, max_seq_len, intra_pp=2, inter_pp=2, transpose_value_cache=True):
self.model = model
self.max_seq_len = max_seq_len
self.transpose_value_cache = transpose_value_cache
world_size = inter_pp + 1
intra_stages = intra_pp
num_layers = self.model.model.config.num_hidden_layers
scale_depth = self.model.model.config.scale_depth
port = "54791"
os.environ["MASTER_ADDR"] = "127.0.0.1"
os.environ["MASTER_PORT"] = port
os.environ["RANK"] = "0"
os.environ["WORLD_SIZE"] = str(world_size)
self.input_queues = []
self.output_queues = []
self.decoder_processes = []
for rank in range(1, world_size):
input_q = mp.Queue()
output_q = mp.Queue()
start_layer = (rank - 1) * (num_layers // (world_size - 1))
end_layer = (rank) * (num_layers // (world_size - 1))
if rank == world_size - 1:
end_layer = num_layers
p = mp.Process(
target=run_decode,
args=(
self.model,
rank,
world_size,
port,
start_layer,
end_layer,
intra_stages,
scale_depth,
self.max_seq_len,
self.transpose_value_cache,
input_q,
output_q,
),
)
p.daemon = True
p.start()
self.input_queues.append(input_q)
self.output_queues.append(output_q)
self.decoder_processes.append(p)
dist.init_process_group()
my_rank = dist.get_rank()
self.world_size = dist.get_world_size()
logger.info(f"rank: {my_rank}, size: {self.world_size}")
dist.barrier()
self.cache_past_key_value = None
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs,
):
t0 = time.perf_counter()
if self.cache_past_key_value != past_key_value:
control = torch.tensor(-1, dtype=torch.int)
dist.broadcast(control, src=0)
for i in range(len(self.decoder_processes)):
self.input_queues[i].put(past_key_value)
control = torch.tensor(0, dtype=torch.int)
dist.broadcast(control, src=0)
hidden_states = hidden_states.to(torch.float16)
dist.send(hidden_states, dst=1)
past_key_value.expand(self.transpose_value_cache)
dist.recv(hidden_states, src=self.world_size - 1)
t1 = time.perf_counter()
return hidden_states, past_key_value
def shutdown(self):
control = torch.tensor(-2, dtype=torch.int)
dist.broadcast(control, src=0)
for p in self.decoder_processes:
p.join(3)
for p in self.decoder_processes:
if p.exitcode is None:
p.kill()
def __del__(self):
self.shutdown()
def run_prefill(
model, max_output_len, max_prompt_len, transpose_value_cache, input_queue, result_queue
):
layer_start = 0
layer_end = len(model.model.layers)
num_heads = model.model.layers[layer_start].self_attn.num_heads
num_key_value_heads = model.model.layers[layer_start].self_attn.num_key_value_heads
head_dim = model.model.layers[layer_start].self_attn.head_dim
rms_norm_eps = model.config.rms_norm_eps
intermediate_size = model.config.intermediate_size
scale_depth = model.config.scale_depth
num_hidden_layers = model.config.num_hidden_layers
deocderlayers = []
layer_weights = []
input_layer_norm_weights = []
post_attn_layernorm_weights = []
layer_indexs = range(layer_start, layer_end)
for layer_idx in layer_indexs:
curr_layer = model.model.layers[layer_idx]
attn_layer = curr_layer.self_attn
mlp_layer = curr_layer.mlp
weights = [
(attn_layer.q_proj.weight, attn_layer.q_proj.scale),
(attn_layer.k_proj.weight, attn_layer.k_proj.scale),
(attn_layer.v_proj.weight, attn_layer.v_proj.scale),
(attn_layer.o_proj.weight, attn_layer.o_proj.scale),
(mlp_layer.gate_proj.weight, mlp_layer.gate_proj.scale),
(mlp_layer.up_proj.weight, mlp_layer.up_proj.scale),
(mlp_layer.down_proj.weight, mlp_layer.down_proj.scale),
]
cached_cos = curr_layer.self_attn.rotary_emb.cos_cached.to(torch.float16)
cached_sin = curr_layer.self_attn.rotary_emb.sin_cached.to(torch.float16)
layer_norm_0 = curr_layer.input_layernorm.weight.to(torch.float16)
layer_norm_1 = curr_layer.post_attention_layernorm.weight.to(torch.float16)
new_decoderlayer = FusedLlamaLowBitDecoderlayer(
weights,
num_heads=num_heads,
num_key_value_heads=num_key_value_heads,
cached_cos=cached_cos,
cached_sin=cached_sin,
layer_norm_0=layer_norm_0,
layer_norm_1=layer_norm_1,
layer_idx=layer_idx,
rms_norm_eps=rms_norm_eps,
intermediate_size=intermediate_size,
scale_depth=scale_depth,
num_hidden_layers=num_hidden_layers,
max_seq_len=max_output_len,
transpose_value=transpose_value_cache,
)
layer_weights.extend(weights)
input_layer_norm_weights.append(layer_norm_0)
post_attn_layernorm_weights.append(layer_norm_1)
model.model.layers[layer_idx] = new_decoderlayer
deocderlayers.append(new_decoderlayer)
print("finish creating all decode layers in prefill")
result_queue.put("loading finish")
while True:
result = input_queue.get()
if result == "stop":
break
hidden_states, position_ids, causal_mask, past_key_values = result
with torch.inference_mode():
for decoder_layer in deocderlayers:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=False,
use_cache=True,
)
hidden_states = layer_outputs[0]
next_decoder_cache = layer_outputs[1]
result_queue.put((hidden_states, next_decoder_cache))
class PrefillRunner:
def __init__(self, model, max_output_len, max_prompt_len, transpose_value_cache):
self.model = model
self.max_output_len = max_output_len
self.max_prompt_len = max_prompt_len
self.transpose_value_cache = transpose_value_cache
self.prefill_result_queue = mp.Queue()
self.prefill_input_queue = mp.Queue()
self.p = mp.Process(
target=run_prefill,
args=(
model,
max_output_len,
max_prompt_len,
transpose_value_cache,
self.prefill_input_queue,
self.prefill_result_queue,
),
)
self.p.daemon = True
self.p.start()
output = self.prefill_result_queue.get()
print(Fore.GREEN + f"prefill process output: {output}")
print(Style.RESET_ALL)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs,
):
seq_len = hidden_states.size(1)
invalidInputError(
seq_len <= self.max_prompt_len,
(
f"seq_len: {seq_len} should be less than or equal"
" to max_prompt_len {self.max_prompt_len}"
),
)
pad_len = self.max_prompt_len - seq_len
hidden_states = F.pad(hidden_states.to(torch.float16), (0, 0, 0, pad_len), value=0.0)
position_ids = F.pad(position_ids, (0, pad_len), value=0)
attention_mask = F.pad(
attention_mask.to(torch.float16),
(0, pad_len, 0, pad_len),
value=torch.finfo(torch.float16).min,
)
args = (hidden_states, position_ids, attention_mask, past_key_value)
self.prefill_input_queue.put(args)
hidden_states, past_key_value = self.prefill_result_queue.get()
past_key_value.shrink(seq_len, self.transpose_value_cache)
hidden_states = hidden_states[:, :seq_len, :]
return hidden_states, past_key_value
def shutdown(self):
self.prefill_input_queue.put("stop")
self.p.join(3)
if self.p.exitcode is None:
self.p.kill()
def __del__(self):
self.shutdown()
from transformers.cache_utils import Cache
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.cache_utils import Cache
from transformers.modeling_attn_mask_utils import (
_prepare_4d_causal_attention_mask,
)
def gen_minicpm_fused_model_forward(prefill_runner, decode_runner):
def minicpm_fused_model_forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
t0 = time.perf_counter()
output_attentions = (
output_attentions if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
invalidInputError(False,
"You cannot specify both decoder_input_ids and "
"decoder_inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape[:2]
elif inputs_embeds is not None:
batch_size, seq_length = inputs_embeds.shape[:2]
else:
invalidInputError(False,
"You have to specify either input_ids or inputs_embeds")
from ipex_llm.transformers.npu_models.kv import DynamicFusedNormalCache
past_key_values_length = 0
if use_cache and not isinstance(past_key_values, DynamicFusedNormalCache):
past_key_values = DynamicFusedNormalCache.from_legacy_cache(past_key_values)
past_key_values_length = past_key_values.get_seq_length()
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length,
seq_length + past_key_values_length,
dtype=torch.long,
device=device
)
position_ids = position_ids.unsqueeze(0)
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.config.scale_emb
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
)
# embed positions
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
if seq_length == 1:
layers_runner = decode_runner
else:
layers_runner = prefill_runner
layer_outputs = layers_runner.forward(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
next_decoder_cache = layer_outputs[1]
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
# ipex-llm changes start
next_cache = next_decoder_cache if use_cache else None
# ipex-llm changes end
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
if v is not None
)
t1 = time.perf_counter()
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
return minicpm_fused_model_forward